Skip to main content

Polyethylene Cups in Total Hip Arthroplasty

  • Chapter
  • First Online:
Hip Arthroplasty

Abstract

Indication for total hip arthroplasty has increased over time due to increased life expectancy and more incidence of avascular necrosis (AVN) in younger patients. Implant longevity mainly depends on the tribology of bearing surfaces. It has evolved from Charnley’s concept of ‘Low friction arthroplasty’ to the present state of implants and techniques. Recent research has been focused on alternative bearing surfaces to decrease particulate debris generated from polyethylene (PE) bearings and subsequently decrease wear and osteolysis. This includes ceramic–polyethylene, metal–polyethylene, metal–metal, and ceramic–ceramic articulations. Earlier generation of polyethylene which was UHMWPE has also been replaced by new highly cross-linked second- and third-generation polyethylene like Vitamin E-doped polyethylene. They have shown good results in younger and more active patients.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Learmonth ID, Young C, Rorabeck C. The operation of the century: Total hip arthroplasty. Lancet. 2007;390:1508–19.

    Article  Google Scholar 

  2. Grieco PW, Pascal S, Newman JM, Shah NV, Stroud SG, Sheth NP, Maheshwari AV. New alternate bearing surfaces in total hip arthroplasty: a review of the current literature. J Clin Orthop Trauma. 2018;9(1):7–16.

    Article  PubMed  Google Scholar 

  3. Kumar N, Arora NC, Datta B. Bearing surfaces in hip replacement–evolution and likely future. Med J Armed Forces India. 2014;70(4):371–6.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Minakawa H, Stone MH, Wroblewski BM, Lancaster JG, Ingham E, Fisher J. Quantification of third-body damage and its effect on UHMWPE wear with different types of femoral head. J Bone Joint Surg (Br). 1998;80(5):894–9.

    Article  CAS  PubMed  Google Scholar 

  5. Elsharkawy K, Higuera CA, Klika AK, Barsoum WK. Evolution of bearing surfaces in total hip arthroplasty: a review. Curr Orthop Pract. 2010;21(2):198–208.

    Article  Google Scholar 

  6. Wroblewski BM, Siney PD, Fleming PA. The principle of low frictional torque in the Charnley total hip replacement. J Bone Joint Surg (Br). 2009;91(7):855–8.

    Article  CAS  PubMed  Google Scholar 

  7. Sosna A, Radonský T, Pokorný D, Veigl D, Horák Z, Jahoda D. Polyetylenováchoroba. ActaChir orthop Traum čech. 2003;70:6–16.

    CAS  Google Scholar 

  8. Pramanik S, Agarwal AK, Rai KN. Chronology of total hip joint replacement and materials development. Trends Biomater Artif Organs. 2005;19(1):15–26.

    Google Scholar 

  9. Maloney WJ, Jasty M, Harris WH, Galante JO, Callaghan JJ. Endosteal erosion in association with stable uncemented femoral components. J Bone Joint Surg Am. 1990;72(7):1025–34.

    Article  CAS  PubMed  Google Scholar 

  10. Vernon-Roberts B, Freeman MAR. The tissue response to total joint replacement prosthesis. In: Swanson SAV, Freeman MAR, editors. The scientific basis of joint replacement. Tunbridge Wells: Pitman Medical Publishing; 1977. p. 86–129.

    Google Scholar 

  11. Willert HG, Semlitsch M. Reactions of the articular capsule to wear products of artificial joint prostheses. J Biomed Mater Res. 1977;11(2):157–64.

    Article  CAS  PubMed  Google Scholar 

  12. Archibeck MJ, Jacobs JJ, Roebuck KA, Glant TT. The basic science of periprostheticosteolysis. Instr Course Lect. 2001;50:185–95.

    CAS  PubMed  Google Scholar 

  13. Amstutz HC, Campbell P, Kossovsky N, Clarke IC. Mechanism and clinical significance of wear debris-induced osteolysis. Clin Orthop Relat Res. 1992;276:7–18.

    Article  Google Scholar 

  14. Lachiewicz PF, Kleeman LT, Seyler T. Bearing surfaces for total hip arthroplasty. JAAOS-J Am Acad Orthop Surg. 2018;26(2):45–57.

    Article  Google Scholar 

  15. McCalden RW, MacDonald SJ, Rorabeck CH, Bourne RB, Chess DG, Charron KD. Wear rate of highly cross-linked polyethylene in total hip arthroplasty: a randomized controlled trial. JBJS. 2009;91(4):773–82.

    Article  Google Scholar 

  16. Dumbleton JH, D'Antonio JA, Manley MT, Capello WN, Wang A. The basis for a second-generation highly cross-linked UHMWPE. Clin Orthop Relat Res. 2006;453:265–71.

    Article  PubMed  Google Scholar 

  17. Jalali O, Scudday T, Fickenscher MC, Barnett S, Gorab R. Third-generation medium cross-linked polyethylene demonstrates very low wear in total hip arthroplasty. Arthroplast Today. 2020;6(3):316–21. https://doi.org/10.1016/j.artd.2020.04.006.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Howie DW, Holubowycz OT, Middleton R, Large Articulation Study Group. Large femoral heads decrease the incidence of dislocation after total hip arthroplasty: a randomized controlled trial. JBJS. 2012;94(12):1095–102.

    Article  Google Scholar 

  19. Chang JD. Future bearing surfaces in total hip arthroplasty. Clin Orthop Surg. 2014;6(1):110.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Pappas MJ, Makris G, Buechel FF. Titanium nitride ceramic film against polyethylene. A 48 million cycle wear test. Clin Orthop Relat Res. 1995;1(317):64–70.

    Google Scholar 

  21. Woodnutt D, Hamelynck K, Woering R. Low metal ion release in patients at up to 8 years following titanium niobium nitride (TiNbN) surface treated metal-on-metal hip arthroplasty. Orthop Proc. 2012;94(SUPP_XLI):140.

    Google Scholar 

  22. Chevillotte C, Pibarot V, Carret JP, Bejui-Hugues J, Guyen O. Nine years follow-up of 100 ceramic-on-ceramic total hip arthroplasty. Int Orthop. 2011;35(11):1599–604.

    Article  PubMed  Google Scholar 

  23. Kanagaraj S, Mathew MT, Fonseca A, Oliveira MS, Simoes JA, Rocha LA. Tribological characterisation of carbon nanotubes/ultrahigh molecular weight polyethylene composites: the effect of sliding distance. Int J Surf Sci Eng. 2010;4(4–6):305–21.

    Article  CAS  Google Scholar 

  24. Kyomoto M, Moro T, Miyaji F, Hashimoto M, Kawaguchi H, Takatori Y, Nakamura K, Ishihara K. Effects of mobility/immobility of surface modification by 2-methacryloyloxyethyl phosphorylcholine polymer on the durability of polyethylene for artificial joints. J Biomed Mater Res A. 2009;90(2):362–71.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Deshmukh, S., Bagaria, V. (2023). Polyethylene Cups in Total Hip Arthroplasty. In: Sharma, M. (eds) Hip Arthroplasty. Springer, Singapore. https://doi.org/10.1007/978-981-99-5517-6_12

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-5517-6_12

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-5516-9

  • Online ISBN: 978-981-99-5517-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics