Skip to main content

Bearing Surfaces in Total Hip Arthroplasty

  • Chapter
  • First Online:
Hip Arthroplasty
  • 197 Accesses

Abstract

Total hip arthroplasty is soon going to witness more than eight decades of practice although the revolution in hip arthroplasty came after the introduction of low friction arthroplasty by Sir John Charnley in the 1960s. Long term outcomes have been good with metal on highly cross-linked polyethylene, which has traditionally been the preferred bearing surface for the past two decades and has almost replaced conventional polyethylene due to concerns over poly-wear and osteolysis. However, with the increasing functional demands of younger patients and increasing life expectancy and awareness about the biological multisystemic effects of wear residues of bearing surfaces, there has been increasing interest in newer bearing surfaces. This chapter discusses the tribological properties of various biomaterials used in hip arthroplasty in isolation and their pros and cons in various combinations like metal-on-polyethylene, metal-on-metal, ceramic-on-ceramic, and ceramic-on-polyethylene. Finally, the current evidence for various combinations is summarized along with a brief sneak-peek into the future of bearing surfaces in hip arthroplasty.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Learmonth ID, Young C, Rorabeck C. The operation of the century: total hip replacement. Lancet. 2007;370(9597):1508–19.

    Article  PubMed  Google Scholar 

  2. Charnley J. Arthroplasty of the hip. A new operation. Lancet. 1961;1(7187):1129–32.

    Article  CAS  PubMed  Google Scholar 

  3. Hopper RH Jr, Young AM, Orishimo KF, Engh CA Jr. Effect of terminal sterilization with gas plasma or gamma radiation on wear of polyethylene liners. J Bone Joint Surg Am. 2003;85(3):464–8.

    Article  PubMed  Google Scholar 

  4. McKellop H, Shen FW, Lu B, Campbell P, Salovey R. Effect of sterilization method and other modifications on the wear resistance of acetabular cups made of ultra-high molecular weight polyethylene. A hip-simulator study. J Bone Joint Surg Am. 2000;82(12):1708–25.

    Article  CAS  PubMed  Google Scholar 

  5. Devane PA, Horne JG, Martin K, Coldham G, Krause B. Three-dimensional polyethylene wear of a press-fit titanium prosthesis. Factors influencing generation of polyethylene debris. J Arthroplast. 1997;12(3):256–66.

    Article  CAS  Google Scholar 

  6. Young AM, Sychterz CJ, Hopper RH Jr, Engh CA. Effect of acetabular modularity on polyethylene wear and osteolysis in total hip arthroplasty. J Bone Joint Surg Am. 2002;84(1):58–63.

    Article  PubMed  Google Scholar 

  7. Harris WH. The problem is osteolysis. Clin Orthop Relat Res. 1995;(311):46–53.

    Google Scholar 

  8. Kim YH, Kim JS, Park JW, Joo JH. Periacetabular osteolysis is the problem in contemporary total hip arthroplasty in young patients. J Arthroplast. 2012;27(1):74–81.

    Article  Google Scholar 

  9. Oonishi H, Tsuji E, Kim YY. Retrieved total hip prostheses. Part I: The effects of cup thickness, head sizes and fusion defects on wear. J Mater Sci Mater Med. 1998;9(7):393–401.

    Article  CAS  PubMed  Google Scholar 

  10. Hirakawa K, Bauer TW, Hashimoto Y, Stulberg BN, Wilde AH, Secic M. Effect of femoral head diameter on tissue concentration of wear debris. J Biomed Mater Res. 1997;36(4):529–35.

    Article  CAS  PubMed  Google Scholar 

  11. Jasty M, Goetz DD, Bragdon CR, Lee KR, Hanson AE, Elder JR, Harris WH. Wear of polyethylene acetabular components in total hip arthroplasty. An analysis of one hundred and twenty-eight components retrieved at autopsy or revision operations. J Bone Joint Surg Am. 1997;79(3):349–58.

    Article  CAS  PubMed  Google Scholar 

  12. McCalden RW, MacDonald SJ, Rorabeck CH, Bourne RB, Chess DG, Charron KD. Wear rate of highly cross-linked polyethylene in total hip arthroplasty. A randomized controlled trial. J Bone Joint Surg Am. 2009;91(4):773–82.

    Article  PubMed  Google Scholar 

  13. Manning DW, Chiang PP, Martell JM, Galante JO, Harris WH. In vivo comparative wear study of traditional and highly cross-linked polyethylene in total hip arthroplasty. J Arthroplast. 2005;20(7):880–6.

    Article  Google Scholar 

  14. Singh G, Klassen R, Howard J, Naudie D, Teeter M, Lanting B. Manufacturing, oxidation, mechanical properties and clinical performance of highly cross-linked polyethylene in total hip arthroplasty. Hip Int. 2018;28(6):573–83.

    Article  PubMed  Google Scholar 

  15. Jacobs CA, Christensen CP, Greenwald AS, McKellop H. Clinical performance of highly cross-linked polyethylenes in total hip arthroplasty. J Bone Joint Surg Am. 2007;89(12):2779–86.

    Article  PubMed  Google Scholar 

  16. Suraci A, Louati H, Culliton KN, Beaulé PE. Comparing in vivo performance of two highly cross-linked polyethylene thermal treatments: remelting vs annealing in acetabular liners. J Arthroplast. 2019;34(7):1509–13.

    Article  Google Scholar 

  17. Oral E, Neils A, Muratoglu OK. High vitamin E content, impact resistant UHMWPE blend without loss of wear resistance. J Biomed Mater Res B Appl Biomater. 2015;103(4):790–7.

    Article  PubMed  Google Scholar 

  18. Bracco P, Oral E. Vitamin E-stabilized UHMWPE for total joint implants: a review. Clin Orthop Relat Res. 2011;469(8):2286–93.

    Article  PubMed  Google Scholar 

  19. Wyatt MC, Roberton A, Foxall-Smi M, Beswick AD, Kunutsor SK, Whitehouse MR. Does vitamin E highly-crosslinked polyethylene convey an advantage in primary total hip replacement? A systematic review and meta-analysis. Hip Int. 2020;30(5):598–608.

    Article  PubMed  Google Scholar 

  20. Kjærgaard K, Ding M, Jensen C, Bragdon C, Malchau H, Andreasen CM, Ovesen O, Hofbauer C, Overgaard S. Vitamin E-doped total hip arthroplasty liners show similar head penetration to highly cross-linked polyethylene at five years: a multi-arm randomized controlled trial. Bone Joint J. 2020;102-B(10):1303–10.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Thoen PS, Nordsletten L, Pripp AH, Röhrl SM. Results of a randomized controlled trial with five-year radiostereometric analysis results of vitamin E-infused highly crosslinked versus moderately crosslinked polyethylene in reverse total hip arthroplasty. Bone Joint J. 2020;102-B(12):1646–53.

    Article  PubMed  Google Scholar 

  22. Kyomoto M, Moro T, Iwasaki Y, Miyaji F, Kawaguchi H, Takatori Y, Nakamura K, Ishihara K. Superlubricious surface mimicking articular cartilage by grafting poly(2-methacryloyloxyethyl phosphorylcholine) on orthopaedic metal bearings. J Biomed Mater Res A. 2009;91(3):730–41.

    Article  PubMed  Google Scholar 

  23. Ishihara K. Highly lubricated polymer interfaces for advanced artificial hip joints through biomimetic design. Polym J. 2015;47:585–97.

    Article  CAS  Google Scholar 

  24. Hannouche D, Hamadouche M, Nizard R, Bizot P, Meunier A, Sedel L. Ceramics in total hip replacement. Clin Orthop Relat Res. 2005;(430):62–71.

    Google Scholar 

  25. Clarke IC, Good V, Williams P, Schroeder D, Anissian L, Stark A, Oonishi H, Schuldies J, Gustafson G. Ultra-low wear rates for rigid-on-rigid bearings in total hip replacements. Proc Inst Mech Eng H. 2000;214(4):331–47.

    Article  CAS  PubMed  Google Scholar 

  26. Campbell P, Shen FW, McKellop H. Biologic and tribologic considerations of alternative bearing surfaces. Clin Orthop Relat Res. 2004;(418):98–111.

    Google Scholar 

  27. Jeffers JR, Walter WL. Ceramic-on-ceramic bearings in hip arthroplasty: state of the art and the future. J Bone Joint Surg Br. 2012;94(6):735–45.

    Article  CAS  PubMed  Google Scholar 

  28. Bader R, Willmann G. Keramische Pfannen für Hüftendoprothesen. Teil 6: Pfannendesign, Inklinations- und Antetorsionswinkel beeinflussen Bewegungsumfang und Impingement [Ceramic cups for hip endoprostheses. 6: Cup design, inclination and antetorsion angle modify range of motion and impingement]. Biomed Tech (Berl). 1999;44(7–8):212–9. German.

    Article  CAS  PubMed  Google Scholar 

  29. Pokorny-Ohlsen A, Knahr K. Medium to long term results of ceramic-on-ceramic bearings in total hip arthroplasty. Chapter 8. In: Knahr K, editor. Tribology of hip and knee arthroplasty, potential drawbacks and benefits of commonly used materials. Springer; 2014.

    Google Scholar 

  30. Bal BS, Khandkar A, Lakshminarayanan R, Clarke I, Hoffman AA, Rahaman MN. Fabrication and testing of silicon nitride bearings in total hip arthroplasty: winner of the 2007 “HAP” PAUL Award. J Arthroplast. 2009;24(1):110–6.

    Article  Google Scholar 

  31. Lewis PM, Moore CA, Olsen M, Schemitsch EH, Waddell JP. Comparison of mid-term clinical outcomes after primary total hip arthroplasty with Oxinium vs cobalt chrome femoral heads. Orthopedics. 2008;31(12 Suppl 2):orthosupersite.com/view.asp?rID=37183.

    PubMed  Google Scholar 

  32. Sobti AS, Busch CA, Afolayan JO, Michael D, Chana R. Early to mid-term outcome of Oxinium on Verilast highly cross-linked polyethylene bearing surface in uncemented total hip arthroplasty. Hip Int. 2019;29(6):660–4.

    Article  PubMed  Google Scholar 

  33. Hampton C, Weitzler L, Baral E, Wright TM, Bostrom MPG. Do oxidized zirconium heads decrease tribocorrosion in total hip arthroplasty? A study of retrieved components. Bone Joint J. 2019;101-B(4):386–9.

    Article  CAS  PubMed  Google Scholar 

  34. Jonsson BA, Kadar T, Havelin LI, Haugan K, Espehaug B, Indrekvam K, Furnes O, Hallan G. Oxinium modular femoral heads do not reduce polyethylene wear in cemented total hip arthroplasty at five years: a randomised trial of 120 hips using radiostereometric analysis. Bone Joint J. 2015;97-B(11):1463–9.

    Article  CAS  PubMed  Google Scholar 

  35. Karidakis GK, Karachalios T. Oxidized zirconium head on crosslinked polyethylene liner in total hip arthroplasty: a 7- to 12-year in vivo comparative wear study. Clin Orthop Relat Res. 2015;473(12):3836–45.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Tribe H, Malek S, Stammers J, Ranawat V, Skinner JA. Advanced wear of an Oxinium™ femoral head implant following polyethylene liner dislocation. Ann R Coll Surg Engl. 2013;95(8):e133–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Mu Z, Tian J, Wu T, Yang J, Pei F. A systematic review of radiological outcomes of highly cross-linked polyethylene versus conventional polyethylene in total hip arthroplasty. Int Orthop. 2009;33(3):599–604.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Devane PA, Horne JG, Ashmore A, Mutimer J, Kim W, Stanley J. Highly cross-linked polyethylene reduces wear and revision rates in total hip arthroplasty: a 10-year double-blinded randomized controlled trial. J Bone Joint Surg Am. 2017;99(20):1703–14.

    Article  PubMed  Google Scholar 

  39. Mall NA, Nunley RM, Zhu JJ, Maloney WJ, Barrack RL, Clohisy JC. The incidence of acetabular osteolysis in young patients with conventional versus highly crosslinked polyethylene. Clin Orthop Relat Res. 2011;469(2):372–81.

    Article  PubMed  Google Scholar 

  40. Beksaç B, Salas A, González Della Valle A, Salvati EA. Wear is reduced in THA performed with highly cross-linked polyethylene. Clin Orthop Relat Res. 2009;467(7):1765–72.

    Article  PubMed  Google Scholar 

  41. Garvin KL, White TC, Dusad A, Hartman CW, Martell J. Low wear rates seen in THAs with highly crosslinked polyethylene at 9 to 14 years in patients younger than age 50 years. Clin Orthop Relat Res. 2015;473(12):3829–35.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Green TR, Fisher J, Stone M, Wroblewski BM, Ingham E. Polyethylene particles of a ‘critical size’ are necessary for the induction of cytokines by macrophages in vitro. Biomaterials. 1998;19(24):2297–302.

    Article  CAS  PubMed  Google Scholar 

  43. Dumbleton JH, Manley MT, Edidin AA. A literature review of the association between wear rate and osteolysis in total hip arthroplasty. J Arthroplast. 2002;17(5):649–61.

    Article  Google Scholar 

  44. Prock-Gibbs H, Pumilia CA, Meckmongkol T, Lovejoy J, Mumith A, Coathup M. Incidence of osteolysis and aseptic loosening following metal-on-highly cross-linked polyethylene hip arthroplasty: a systematic review of studies with up to 15-year follow-up. J Bone Joint Surg Am. 2021;103(8):728–40.

    Article  PubMed  Google Scholar 

  45. McKellop HA, Campbell P, Park SH, Schmalzried TP, Grigoris P, Amstutz HC, Sarmiento A. The origin of submicron polyethylene wear debris in total hip arthroplasty. Clin Orthop Relat Res. 1995;(311):3–20.

    Google Scholar 

  46. Rivière C, Harman C, Logishetty K, Van Der Straeten C. Hip replacement: its development and future. Chapter 3. In: Rivière C, Vendittoli PA, editors. Personalized hip and knee joint replacement [Internet]. Cham: Springer; 2020.

    Chapter  Google Scholar 

  47. McMinn D, Daniel J. History and modern concepts in surface replacement. Proc Inst Mech Eng H. 2006;220(2):239–51.

    Article  CAS  PubMed  Google Scholar 

  48. Daniel J, Pynsent PB, McMinn DJ. Metal-on-metal resurfacing of the hip in patients under the age of 55 years with osteoarthritis. J Bone Joint Surg Br. 2004;86(2):177–84.

    Article  CAS  PubMed  Google Scholar 

  49. Silva M, Heisel C, Schmalzried TP. Metal-on-metal total hip replacement. Clin Orthop Relat Res. 2005;(430):53–61.

    Google Scholar 

  50. Moon JK, Kim Y, Hwang KT, Yang JH, Oh YH, Kim YH. Long-term outcomes after metal-on-metal total hip arthroplasty with a 28-mm head: a 17- to 23-year follow-up study of a previous report. J Arthroplast. 2018;33(7):2165–72.

    Article  Google Scholar 

  51. National Joint Registry for England. Wales, Northern Ireland and the Isle of Man. 5th Annual Report. http://www.njrcentre.org.uk/njrcentre/Portals/0/Documents/England/Reports/5th%20Annual.pdf. Accessed 2008.

  52. Australian Orthopaedic Association National Joint Replacement Registry Annual Report. https://aoanjrr.sahmri.com/documents/10180/42662/Annual%20Report%202008?version=1.1&t=1349406277970. Accessed 2008.

  53. Willert HG, Buchhorn GH, Fayyazi A, Flury R, Windler M, Köster G, Lohmann CH. Metal-on-metal bearings and hypersensitivity in patients with artificial hip joints. A clinical and histomorphological study. J Bone Joint Surg Am. 2005;87(1):28–36.

    Article  PubMed  Google Scholar 

  54. Jacobs JJ, Hallab NJ. Loosening and osteolysis associated with metal-on-metal bearings: a local effect of metal hypersensitivity? J Bone Joint Surg Am. 2006;88(6):1171–2.

    PubMed  Google Scholar 

  55. Brodner W, Bitzan P, Meisinger V, Kaider A, Gottsauner-Wolf F, Kotz R. Elevated serum cobalt with metal-on-metal articulating surfaces. J Bone Joint Surg Br. 1997;79(2):316–21.

    Article  CAS  PubMed  Google Scholar 

  56. Urban RM, Jacobs JJ, Tomlinson MJ, Gavrilovic J, Black J, Peoc’h M. Dissemination of wear particles to the liver, spleen, and abdominal lymph nodes of patients with hip or knee replacement. J Bone Joint Surg Am. 2000;82(4):457–76.

    Article  CAS  PubMed  Google Scholar 

  57. Case CP. Chromosomal changes after surgery for joint replacement. J Bone Joint Surg Br. 2001;83(8):1093–5.

    Article  CAS  PubMed  Google Scholar 

  58. Smith AJ, Dieppe P, Porter M, Blom AW, National Joint Registry of England and Wales. Risk of cancer in first seven years after metal-on-metal hip replacement compared with other bearings and general population: linkage study between the National Joint Registry of England and Wales and hospital episode statistics. BMJ. 2012;344:e2383. https://doi.org/10.1136/bmj.e2383.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Boutin P. Total arthroplasty of the hip by fritted aluminum prosthesis. Experimental study and 1st clinical applications. Rev Chir Orthop Reparatrice Appar Mot. 1972;58(3):229–46. French.

    PubMed  Google Scholar 

  60. Hernigou P, Roubineau F, Bouthors C, Flouzat-Lachaniette CH. What every surgeon should know about Ceramic-on-Ceramic bearings in young patients. EFORT Open Rev. 2017;1(4):107–11.

    Article  PubMed  Google Scholar 

  61. Vendittoli PA, Shahin M, Rivière C, Barry J, Lavoie P, Duval N. Ceramic-on-ceramic total hip arthroplasty is superior to metal-on-conventional polyethylene at 20-year follow-up: a randomised clinical trial. Orthop Traumatol Surg Res. 2021;107(1):102744.

    Article  PubMed  Google Scholar 

  62. Yoon BH, Park JW, Cha YH, Won SH, Lee YK, Ha YC, Koo KH. Incidence of ceramic fracture in contemporary ceramic-on-ceramic total hip arthroplasty: a meta-analysis of proportions. J Arthroplast. 2020;35(5):1437–1443.e3.

    Article  Google Scholar 

  63. Stanat SJ, Capozzi JD. Squeaking in third- and fourth-generation ceramic-on-ceramic total hip arthroplasty: meta-analysis and systematic review. J Arthroplast. 2012;27(3):445–53.

    Article  Google Scholar 

  64. Kim MW, Kim SM, Chung YY. Total hip arthroplasty using ceramic-on-ceramic bearing surfaces: long-term assessment of squeaking sounds. Hip Pelvis. 2018;30(1):18–22.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Wu GL, Zhu W, Zhao Y, Ma Q, Weng XS. Hip squeaking after ceramic-on-ceramic total hip arthroplasty. Chin Med J. 2016;129(15):1861–6.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Baruffaldi F, Mecca R, Stea S, Beraudi A, Bordini B, Amabile M, Sudanese A, Toni A. Squeaking and other noises in patients with ceramic-on-ceramic total hip arthroplasty. Hip Int. 2020;30(4):438–45.

    Article  PubMed  Google Scholar 

  67. Hernigou P, Zilber S, Filippini P, Poignard A. Ceramic-ceramic bearing decreases osteolysis: a 20-year study versus ceramic-polyethylene on the contralateral hip. Clin Orthop Relat Res. 2009;467(9):2274–80.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Kim YH, Park JW. Eighteen-year follow-up study of 2 alternative bearing surfaces used in total hip arthroplasty in the same young patients. J Arthroplast. 2020;35(3):824–30.

    Article  Google Scholar 

  69. Hu D, Yang X, Tan Y, Alaidaros M, Chen L. Ceramic-on-ceramic versus ceramic-on-polyethylene bearing surfaces in total hip arthroplasty. Orthopedics. 2015;38(4):e331–8.

    Article  PubMed  Google Scholar 

  70. Chang JD. Future bearing surfaces in total hip arthroplasty. Clin Orthop Surg. 2014;6(1):110–6.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Bal BS, Khandkar A, Lakshminarayanan R, Clarke I, Hoffman AA, Rahaman MN. Testing of silicon nitride ceramic bearings for total hip arthroplasty. J Biomed Mater Res B Appl Biomater. 2008;87(2):447–54.

    Article  PubMed  Google Scholar 

  72. Carbone A, Howie DW, McGee M, Field J, Pearcy M, Smith N, Jones E. Aging performance of a compliant layer bearing acetabular prosthesis in an ovine hip arthroplasty model. J Arthroplast. 2006;21(6):899–906.

    Article  Google Scholar 

  73. Elsner JJ, Shemesh M, Mezape Y, Levenshtein M, Hakshur K, Shterling A, Linder-Ganz E, Eliaz N. Long-term evaluation of a compliant cushion form acetabular bearing for hip joint replacement: a 20 million cycles wear simulation. J Orthop Res. 2011;29(12):1859–66.

    Article  PubMed  Google Scholar 

  74. Moroni A, Nocco E, Hoque M, Diremigio E, Buffoli D, Cantù F, Catalani S, Apostoli P. Cushion bearings versus large diameter head metal-on-metal bearings in total hip arthroplasty: a short-term metal ion study. Arch Orthop Trauma Surg. 2012;132(1):123–9.

    Article  PubMed  Google Scholar 

  75. Ford A, Hua Z, Ferguson SJ, Pruitt LA, Gao L. A 3D-transient elastohydrodynamic lubrication hip implant model to compare ultra high molecular weight polyethylene with more compliant polycarbonate polyurethane acetabular cups. J Mech Behav Biomed Mater. 2021;119:104472.

    Article  CAS  PubMed  Google Scholar 

  76. Siebert WE, Mai S, Kurtz S. Retrieval analysis of a polycarbonate-urethane acetabular cup: a case report. J Long-Term Eff Med Implants. 2008;18(1):69–74.

    Article  PubMed  Google Scholar 

  77. Field RE, Rajakulendran K, Eswaramoorthy VK, Rushton N. Three-year prospective clinical and radiological results of a new flexible horseshoe acetabular cup. Hip Int. 2012;22(6):598–606.

    Article  PubMed  Google Scholar 

  78. Ghosh R, Gupta S. Bone remodelling around cementless composite acetabular components: the effects of implant geometry and implant-bone interfacial conditions. J Mech Behav Biomed Mater. 2014;32:257–69.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vivek Logani .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Logani, V. (2023). Bearing Surfaces in Total Hip Arthroplasty. In: Sharma, M. (eds) Hip Arthroplasty. Springer, Singapore. https://doi.org/10.1007/978-981-99-5517-6_11

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-5517-6_11

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-5516-9

  • Online ISBN: 978-981-99-5517-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics