Skip to main content

Part of the book series: Additive Manufacturing Technology ((AMT))

  • 229 Accesses

Abstract

Powder bed fusion (PBF) is an additive manufacturing (AM) technology in which a heat source is used to selectively melt/sinter powder bed. Typical PBF technology includes selective laser sintering (SLS), selective laser melting (SLM), electron beam melting (EBM), etc. Among them, SLM uses a laser as the heat source to selectively melt the powder bed to fabricate metal parts, which is also known as laser powder bed fusion (LPBF) technology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Beaman JJ (1997) Historical perspective, Chapter 3 in JTEC/WTEC panel report on rapid prototyping in Europe and Japan. WETC Hyper-Librarian

    Google Scholar 

  2. Bourell DL, Beaman JL, Leu MC et al (2009) A brief history of additive manufacturing and the 2009 roadmap for additive manufacturing: looking back and looking ahead, RapidTech. In: Workshop on rapid technologies, US-Turkey. Istanbul, Turkey

    Google Scholar 

  3. Chua CK, Leong KF, Lim CS (2010) Rapid prototyping: principles and applications (with companion CD-ROM). World Scientific Publishing Company

    Google Scholar 

  4. Nakagawa T (1979) Blanking tool by stacked bainite steel plates. Press Technique, pp 93–101

    Google Scholar 

  5. Pham D, Dimov SS (2012) Rapid manufacturing: the technologies and applications of rapid prototyping and rapid tooling. Springer, Berlin

    Google Scholar 

  6. Pipes A (1982) Plotting the progress of CAD/CAM: falling hardware costs and improved software are making CAD/CAM systems more attractive. Data Process 24(10):19–21

    Article  Google Scholar 

  7. Wohlers T, Gornet T (2014) History of additive manufacturing. Wohlors report, vol 24, p 118

    Google Scholar 

  8. Mueller B (2012) Additive manufacturing technologies—rapid prototyping to direct digital manufacturing. Assem Autom 32(2):1501–1755

    Article  Google Scholar 

  9. Shellabear M, Nyrhilä O (2004) DMLS-Development history and state of the art. ESO GmbH Electro Optical Systems, Erlangen

    Google Scholar 

  10. Song C, Weng C, Yang Y et al (2017) Development status and trend for the equipment of selective laser melted. Mech Electr Eng Technol 46(10):1–5

    Google Scholar 

  11. Wang Z, Huang W, Zeng X (2019) Status and prospect of selective laser melting machines. J Netshape Form Eng 11(4):21–28

    Google Scholar 

  12. Buchbinder D, Schleifenbaum H, Heidrich S et al (2011) High power selective laser melting (HP SLM) of aluminum parts. Phys Procedia 12:271–278

    Article  Google Scholar 

  13. Bartkowiak K, Ullrich S, Frick T et al (2011) New developments of laser processing aluminium alloys via additive manufacturing technique. Phys Procedia 12:393–401

    Article  Google Scholar 

  14. EOS. Metal 3D Printer_DMLS Printer_Additive Manufacturing Systems [EB/OL]. [2020-05-11]. https://www.eos.info/systems_solutions/metal/systems_equipment

  15. GE additive. Additive Manufacturing Machines_GE Additive [EB/OL]. [2020-06-12]. https://www.ge.com/additive/additive-manufacturing/machines

  16. 3D SYSTEMS metal 3D printers-3D systems [EB/OL]. [2020-06-20]. https://www.3dsystems.com/3d-printers/metal

  17. Xi'an Bright Laser Technologies Co., Ltd. Products & services [EB/OL]. [2020-06-20]. http://www.xa-blt.com/home/product/index

  18. Beijing E-Plus-3D Additive Technology Co., Ltd. [EB/OL]. http://www.eplus3d.com

  19. Wuhan Huake 3D Technology Co., Ltd. [EB/OL]. [2020-06-30]. http://www.huake3d.com/product_detail.asp?Product_ID=48&Product_ParentID=10

  20. Guangzhou Laseradd Additive Technology Co., Ltd. [EB/OL]. http://www.laseradd.com/products.aspx?TypeId=74&FId=t3:74:3

  21. SLM. High quality industrial metal 3D printers_SLM Solutions [EB/OL]. [2020-06-20]. https://www.slm-solutions.com/products/machines/selectivelasermeltingmachines

  22. Aniwaa. Get the right 3D printer or 3D scanner [EB/OL]. [2020-06-20]. https://www.aniwaa.com

  23. Cloud 3D printing/3D printing equipment [EB/OL]. [2020-07-03]. http://www.cloud-3dp.com/hardware_goods.php?act=list

  24. Flynn JM, Shokrani A, Newman ST et al (2016) Hybrid additive and subtractive machine tools—research and industrial developments. Int J Mach Tools Manuf 101:79–101

    Article  Google Scholar 

  25. Hansel A, Mori M, Fujishima M et al (2016) Study on consistently optimum deposition conditions of typical metal material using additive/subtractive hybrid machine tool. Procedia CIRP 46:579–582

    Article  Google Scholar 

  26. Chen J, Yang Y, Song C et al (2019) Interfacial microstructure and mechanical properties of 316L/CuSn10 multi-material bimetallic structure fabricated by selective laser melting. Mater Sci Eng A 752:75–85

    Article  Google Scholar 

  27. Zhang M, Yang Y, Wang D et al (2019) Microstructure and mechanical properties of CuSn/18Ni300 bimetallic porous structures manufactured by selective laser melting. Mater Des 165:107583

    Article  Google Scholar 

  28. Wei C, Li L, Zhang X et al (2018) 3D printing of multiple metallic materials via modified selective laser melting. CIRP Ann 67(1):245–248

    Article  Google Scholar 

  29. Wu W, Yang Y, Mao G et al (2019) Design and implementation of SLM system for additive manufacturing of heterogeneous material parts. Manuf Technol Mach Tool 10:13

    Google Scholar 

  30. Wu W, Yang Y, Mao G et al (2019) Free manufacturing of heterogeneous materials part by selective laser melting. Opt Precis Eng 27(3):517–526

    Article  Google Scholar 

  31. Wu W, Lin W, Liao M et al (2019) Micro-structure analysis of CuSn10 copper alloy/4340 steel heterogeneous material part made by selective laser melting. Mod Manuf Technol Equip (9):152–154

    Google Scholar 

  32. Li N, Huang S, Zhang G et al (2019) Progress in additive manufacturing on new materials: a review. J Mater Sci Technol 35(2):242–269

    Article  Google Scholar 

  33. Bi G, Sun CN, Chen H et al (2014) Microstructure and tensile properties of superalloy IN100 fabricated by micro-laser aided additive manufacturing. Mater Des 60:401–408

    Article  Google Scholar 

  34. Zhang X, Cheng B, Tuffile C (2020) Simulation study of the spatter removal process and optimization design of gas flow system in laser powder bed fusion. Addit Manuf 32:101049

    Google Scholar 

  35. Todaro CJ, Easton MA, Qiu D et al (2020) Grain structure control during metal 3D printing by high-intensity ultrasound. Nat Commun 11(1):1–9. Zhang K, Liu T, Liao W et al (2018) Photodiode data collection and processing of molten pool of alumina parts produced through selective laser melting. Optik 156:487–497

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Di Wang .

Rights and permissions

Reprints and permissions

Copyright information

© 2024 National Defense Industry Press

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wang, D., Yang, Y., Liu, Y., Bai, Y., Tan, C. (2024). Introductions. In: Laser Powder Bed Fusion of Additive Manufacturing Technology. Additive Manufacturing Technology. Springer, Singapore. https://doi.org/10.1007/978-981-99-5513-8_1

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-5513-8_1

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-5512-1

  • Online ISBN: 978-981-99-5513-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics