Skip to main content

Methods and Engineering of Electrospinning

  • Chapter
  • First Online:
Electrospun Nanofibrous Technology for Clean Water Production

Part of the book series: Nanostructure Science and Technology ((NST))

  • 97 Accesses

Abstract

Electrospinning enables producing nanofibers or nanofiber mats from diverse polymers, polymer blends or polymers with embedded nanoparticles. Depending on the technology used, even core–shell structures or Janus fibers can be created. Such nanofibers can be applied in a broad range of fields, from biotechnology and biomedicine to filters and batteries. Here we give an overview of different electrospinning methods, from the needle-based technique to better upscalable needleless techniques, followed by recent developments in near-field electrospinning. Starting from the basic knowledge, each section will explain the respective techniques in detail, allowing beginners to get a first idea as well as specialists to gain most recent knowledge in the broad field of electrospinning.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cooley, J.F.: Apparatus for electrically dispersing fluids, US 692,631, 1902

    Google Scholar 

  2. Morton, W.J.: Method of dispersing fluids, US 705,691, 1902

    Google Scholar 

  3. Cooley, J.F.: Electrical method of dispersing fluids, US 745,276, 1903

    Google Scholar 

  4. Hagiwaba, K., Oji-Machi, O., Ku, K.: Process for manufacturing artificial silk and other filaments by applying electric current, Jpn 1,699,615, 1929

    Google Scholar 

  5. Formhals, A.: Process and apparatus for preparing artificial threads, US 1,975,504, 1934

    Google Scholar 

  6. Jacobsen, M.: The nonwovens industry meets the filtration business. Nonwovens Industry, May 1991, 36–41

    Google Scholar 

  7. Kim, S.E., Heo, D.N., Lee, J.B., Kim, J.R., Park, S.H., Jeon, S.H., Kwon, I.K.: Electrospun gelatin/polyurethane blended nanofibers for wound healing. Biomed. Mater. 4, 044106 (2009)

    Article  Google Scholar 

  8. Sadri, M., Arab-Sorkhi, S., Vatani, H., Bagheri-Pebdeni, A.: New wound dressing polymeric nanofiber containing green tea extract prepared by electrospinning method. Fibers Polym. 16, 1742–1750 (2015)

    Article  CAS  Google Scholar 

  9. Mamun, A.: Review of possible applications of nanofibrous mats for wound dressings. Tekstilec 62, 89–100 (2019)

    Article  CAS  Google Scholar 

  10. Law, J.X., Liau, L.L., Saim, A., Yang, Y., Idrus, R.: Electrospun collagen nanofibers and their applications in skin tissue engineering. Tissue Eng. Regen. Med. 14, 699–718 (2017)

    Article  Google Scholar 

  11. Nemati, S., Kim, S.-J., Shin, Y.M., Shin, H.S.: Current progress in application of polymeric nanofibers to tissue engineering. Nano Converg. 6, 36 (2019)

    Article  Google Scholar 

  12. Wehlage, D., Blattner, H., Mamun, A., Kutzli, I., Diestelhorst, E., Rattenholl, A., Gudermann, F., LĂ¼tkemeyer, D., Ehrmann, A.: Cell growth on electrospun nanofiber mats from polyacrylonitrile (PAN) blends. AIMS Bioeng. 7, 43–54 (2020)

    Article  CAS  Google Scholar 

  13. Séon-Lutz, M., Couffin, A.-C., Vignoud, S., Schlatter, G., Hébraud, A.: Electrospinning in water and in situ crosslinking of hyaluronic acid/cyclodextrin nanofibers: towards wound dressing with controlled drug release. Carbohyd. Polym. 207, 276–287 (2019)

    Article  Google Scholar 

  14. Kajdic, S., Planinsek, O., Gasperlin, M., Kocbek, P.: Electrospun nanofibers for customized drug-delivery systems. J. Drug Deliv. Sci. Technol. 51, 672–681 (2019)

    Article  CAS  Google Scholar 

  15. Zupancic, S., Preem, L., Kristl, J., Putrins, M., Tenson, T., Kocbek, P., Kogermann, K.: Impact of PCL nanofiber mat structural properties on hydrophilic drug release and antibacterial activity on periodontal pathogens. Eur. J. Pharm. Sci. 122, 347–358 (2018)

    Article  CAS  Google Scholar 

  16. di Blasi, A., Busaccaa, C., Di Blasia, O., Briguglioa, N., Squadritoa, G., Antonuccia, V.: Synthesis of flexible electrodes based on electrospun carbon nanofibers with Mn3O4 nanoparticles for vanadium redox flow battery application. Appl. Energy 190, 165–171 (2017)

    Article  Google Scholar 

  17. Liu, M., Deng, N.P., Ju, J.G., Fan, L.L., Wang, L.Y., Li, Z.J., Zhao, H.J., Yang, G., Kang, W.M., Yan, J., Chen, B.: A review: electrospun nanofiber materials for lithium-sulfur batteries. Adv. Func. Mater. 29, 1905467 (2019)

    Article  CAS  Google Scholar 

  18. Bhaway, S.M., Chen, Y.-M., Guo, Y.H., Tangvijitsakul, P., Soucek, M.D., Cakmak, M., Zhu, Y., Vogt, B.D.: Hierarchical electrospun and cooperatively assembled nanoporous Ni/NiO/MnOx/carbon nanofiber composites for lithium ion battery anodes. ACS Appl. Mater. Interfaces. 8, 19484–19493 (2016)

    Google Scholar 

  19. Li, Y., Li, H.X., Cao, K.Z., Jin, T., Wang, X.J., Sun, H.M., Ning, J.X., Wang, Y.J., Jiao, L.F.: Electrospun three dimensional Co/CoP@nitrogen-doped carbon nanofibers network for efficient hydrogen evolution. Energy Stor. Mater. 12, 44–53 (2018)

    Google Scholar 

  20. Cho, Y.-B., Yu, A., Lee, C.M., Kim, M.H., Lee, Y.M.: Fundamental study of facile and stable hydrogen evolution reaction at eectrospun Ir and Ru mixed oxide nanofibers. ACS Appl. Mater. Interfaces 10, 541–549 (2018)

    Article  CAS  Google Scholar 

  21. Surendran, S., Shanmugapriya, S., Sivanantham, A., Shanmugam, S., Selvan, R.K.: Electrospun carbon nanofibers encapsulated with NiCoP: a multifunctional electrode for supercapattery and oxygen reduction, oxygen evolution, and hydrogen evolution reactions. Adv. Energy Mater. 8, 1800555 (2018)

    Article  Google Scholar 

  22. Mali, S.S., Shim, C.S., Kim, H., Hong, C.K.: Reduced graphene oxide (rGO) grafted zinc stannate (Zn2SnO4) nanofiber scaffolds for highly efficient mixed-halide perovskite solar cells. J. Mater. Chem. A 4, 12158–12169 (2016)

    Article  CAS  Google Scholar 

  23. JuhĂ¡sz Junger, I., Wehlage, D., Böttjer, R., Grothe, T., JuhĂ¡sz, L., Grassmann, C., Blachowicz, T., Ehrmann, A.: Dye-sensitized solar cells with electrospun nanofiber mat-based counter electrodes. Materials. 11, 1604 (2018)

    Google Scholar 

  24. Kohn, S., Wehlage, D., JuhĂ¡sz Junger, I., Ehrmann, A.: Electrospinning a dye-sensitized solar cell. Catalysts. 9, 975 (2019)

    Google Scholar 

  25. Zhao, H.P., Liu, L., Vellacheri, R., Lei, Y.: Recent advances in designing and fabricating self-supported nanoelectrodes for supercapacitors. Adv. Sci 4, 1700188 (2017)

    Article  Google Scholar 

  26. Wang, F., Wu, X., Yuan, X., Liu, Z., Zhang, Y., Fu, L., Zhu, Y., Zhou, Q., Wu, Y., Huang, W.: Latest advances in supercapacitors: from new electrode materials to novel device designs. Chem. Soc. Rev. 46, 6816–6854 (2017)

    Article  CAS  Google Scholar 

  27. Wang, C.H., Kaneti, Y.V., Bando, Y., Lin, J.J., Liu, C., Li, J.S., Yamauchi, Y.: Metal-organic framework-derived one-dimensional porous or hollow carbon-based nanofibers for energy storage and conversion. Mater. Horiz. 5, 394–407 (2018)

    Article  CAS  Google Scholar 

  28. Sahay, R., Thavasi, V., Ramakrishna, S.: Design modifications in electrospinning setup for advanced applications. J. Nanomater. 2011, 317673 (2011)

    Article  Google Scholar 

  29. Taylor, R.E.: Electrically driven jets. Proc. R. Soc. Lond. A. 313, 453–475 (1969)

    Google Scholar 

  30. Spivak, A.F., Dzenis, Y.A.: Asymptotic decay of radius of a weakly conductive viscous jet in an external electric field. Appl. Phys. Lett. 73, 3067–3069 (1998)

    Article  CAS  Google Scholar 

  31. Yarin, A.L., Koombhongse, S., Reneker, D.H.: Bending instability in electrospinning of nanofibers. J. Appl. Phys. 89, 3018–3026 (2001)

    Article  CAS  Google Scholar 

  32. Hohman, M.M., Shin, M., Rutledge, G., Brenner, M.P.: Electrospinning and electrically forced jets. I. Stability theory. Phys. Fluids. 13, 2201–2220 (2001)

    Google Scholar 

  33. Feng, J.J.: The stretching of an electrified non-Newtonian jet: a model for electrospinning. Phys. Fluids 14, 3912–3926 (2002)

    Article  CAS  Google Scholar 

  34. Carroll, C.P., Joo, Y.L.: Electrospinning of viscoelastic Boger fluids: modeling and experiments. Phys. Fluids 18, 053102 (2006)

    Article  Google Scholar 

  35. Xue, J.J., Wu, T., Dai, Y.Q., Xia, Y.: Electrospinning and electrospun nanofibers: methods, materials, and applications. Chem. Rev. 119, 5298–5415 (2019)

    Article  CAS  Google Scholar 

  36. Reneker, D.H., Yarin, A.L., Fong, H., Koombhongse, S.: Bending instability of electrically charged liquid jets of polymer solutions in electrospinning. J. Appl. Phys. 87, 4531–4546 (2000)

    Article  CAS  Google Scholar 

  37. Shin, Y.M., Hohman, M.M., Brenner, M.P., Rutledge, G.C.: Experimental characterization of electrospinning: the electrically forced jet and instabilities. Polymer 42, 9955 (2001)

    Article  CAS  Google Scholar 

  38. Shin, Y.M., Hohman, M.M., Brenner, M.P., Rutledge, G.C.: Electrospinning: a whipping fluid jet generates submicron polymer fibers. Appl. Phys. Lett. 78, 1149–1151 (2001)

    Article  CAS  Google Scholar 

  39. Zuo, W.W., Zhu, M.F., Yang, W., Yu, H., Chen, Y.M., Zhang, Y.: Experimental study on relationship between jet instability and formation of beaded fibers during electrospinning. Polymer Eng. Sci. 45, 704–709 (2005)

    Article  CAS  Google Scholar 

  40. Fong, H., Chun, I., Reneker, D.H.: Beaded nanofibers formed during electrospinning. Polymer 40, 4585–4592 (1999)

    Article  CAS  Google Scholar 

  41. Sabantina, L., Mirasol, J.R., Cordero, T., Finsterbusch, K., Ehrmann, A.: Investigation of needleless electrospun PAN nanofiber mats. AIP Conf. Ser. 1952, 020085 (2018)

    Google Scholar 

  42. Greiner, A., Wendorff, J.H.: Electrospinning: a fascinating method for the preparation of ultrathin fibers. Angew. Chem. Int. Ed. 46, 5670–5703 (2007)

    Article  CAS  Google Scholar 

  43. Struik, L.C.E.: Physical aging in plastics and other glassy materials. Polymer Eng. Sci. 17, 165–173 (1977)

    Article  CAS  Google Scholar 

  44. Agarwal, S., Puchner, M., Greiner, A., Wendorff, J.H.: Synthesis and microstructural characterisation of copolymers of L-lactide and trimethylene carbonate prepared using the SmI2/Sm initiator system. Polym. Int. 54, 1422–1428 (2005)

    Article  CAS  Google Scholar 

  45. Chen, H.P., Liu, Z., Cebe, P.: Chain confinement in electrospun nanofibers of PET with carbon nanotubes. Polymer 50, 872–880 (2009)

    Article  CAS  Google Scholar 

  46. Su, Z.Y., Li, J.F., Li, Q., Ni, T.Y., Gang, W.: Chain conformation, crystallization behavior, electrical and mechanical properties of electrospun polymer-carbon nanotube hybrid nanofibers with different orientations. Carbon. 50, 5605–5617 (2012)

    Google Scholar 

  47. Kolbuk, D., Sajkiewicz, P., Kowalewski, T.A.: Optical birefringence and molecular orientation of electrospun polycaprolactone fibers by polarizing-interference microscopy. Eur. Polym. J. 48, 275–283 (2012)

    Article  CAS  Google Scholar 

  48. Fennessey, S.F., Farris, R.J.: Fabrication of aligned and molecularly oriented electrospun polyacrylonitrile nanofibers and the mechanical behavior of their twisted yarns. Polymer 45, 4217–4225 (2004)

    Article  CAS  Google Scholar 

  49. Xue, J.J., Xie, J.W., Liu, W.Y., Xia, Y.N.: Electrospun nanofibers: new concepts, materials, and applications. Acc. Chem. Res. 50, 1976–1987 (2017)

    Article  CAS  Google Scholar 

  50. Li, Y., Lim, C.T., Kotaki, M.: Study on structural and mechanical properties of porous PLA nanofibers electrospun by channel-based electrospinning system. Polymer 56, 572–580 (2015)

    Article  CAS  Google Scholar 

  51. McCann, J.T., Marquez, M., Xia, Y.N.: Highly porous fibers by electrospinning into a cryogenic liquid. J. Am. Chem. Soc. 128, 1436–1437 (2006)

    Article  CAS  Google Scholar 

  52. Zhang, Y.Z., Feng, Y., Huang, Z.-M., Ramakrishna, S., Lim, C.T.: Fabrication of porous electrospun nanofibres. Nanotechnology 17, 901–908 (2006)

    Article  CAS  Google Scholar 

  53. Lee, J.B., Jeong, S.I., Bae, M.S., Yang, D.H., Heo, D.N., Kim, C.H., Alsberg, E., Kwon, I.K.: Highly porous electrospun nanofibers enhanced by ultrasonication for improved cellular infiltration. Tissue Eng. A 17, 2695–2702 (2011)

    Article  CAS  Google Scholar 

  54. Liu, Y., Zhang, L., Sun, X.-F., Liu, J., Fan, J., Huang, D.-W.: Multi-jet electrospinning via auxiliary electrode. Mater. Lett. 141, 153–156 (2015)

    Article  CAS  Google Scholar 

  55. Wu, Y.-K., Wang, L., Fan, J., Shou, W., Zhou, B.-M., Liu, Y.: Multi-jet electrospinning with auxiliary electrode: the influence of solution properties. Polymers 10, 572 (2018)

    Article  Google Scholar 

  56. Teo, W.E., Kotaki, M., Mo, X.M., Ramakrishna, S.: Porous tubular structures with controlled fibre orientation using a modified electrospinning method. Nanotechnology 16, 918–924 (2005)

    Article  CAS  Google Scholar 

  57. Carnell, L.S., Siochi, E.J., Wincheski, R.A., Holloway, N.M., Clark, R.L.: Electric field effects on fiber alignment using an auxiliary electrode during electrospinning. Scripta Mater. 60, 359–361 (2009)

    Article  CAS  Google Scholar 

  58. Gu, B.K., Shin, M.K., Sohn, K.W., Kim, S.I., Kim, S.J., Kim, S.-K., Lee, H.W., Park, J.S.: Direct fabrication of twisted nanofibers by electrospinning. Appl. Phys. Lett. 90, 263902 (2007)

    Article  Google Scholar 

  59. Zheng, Y.S., Liu, X.K., Zeng, Y.C.: Electrospun nanofibers from a multihole spinneret with uniform electric field. J. Appl. Polym. Sci. 130, 3221–3228 (2013)

    Article  CAS  Google Scholar 

  60. Kim, G.H., Cho, Y.-S., Kim, W.D.: Stability analysis for multi-jets electrospinning process modified with a cylindrical electrode. Eur. Polym. J. 42, 2031–2038 (2006)

    Article  CAS  Google Scholar 

  61. Tian, L., Zhao, C.C., Li, J., Pan, Z.J.: Multi-needle, electrospun, nanofiber filaments: effects of the needle arrangement on the nanofiber alignment degree and electrostatic field distribution. Tex. Res. J. 85, 621–631 (2015)

    Article  CAS  Google Scholar 

  62. Varabhas, J.S., Chase, G.G., Reneker, D.H.: Electrospun nanofibers from a porous hollow tube. Polymer 49, 4226–4229 (2008)

    Article  CAS  Google Scholar 

  63. Yang, Y., Jia, Z.D., Li, Q., Hou, L., Liu, J.N., Wang, L.M., Guan, Z.C., Zahn, M.: A shield ring enhanced equilateral hexagon distributed multi-needle electrospinning spinneret. IEEE Trans. Dielectr. Electr. Insul. 17, 1592–1601 (2010)

    Article  Google Scholar 

  64. Zhu, Z.M., Wu, P.X., Wang, Z.F., Xu, G.J., Wang, H., Chen, X., Wang, R.Z., Huang, W.M., Chen, R., Chen, X., Liu, Z.: Optimization of electric field uniformity of multi-needle electrospinning nozzle. AIP Adv. 9, 105104 (2019)

    Article  Google Scholar 

  65. Kabay, G., Demirci, C., Can, G.K., Meydan, A.E., Dasan, B.G., Mutlu, M.: A comparative study of single-needle and coaxial electrospun amyloid-like protein nanofibers to investigate hydrophilic drug release behavior. Biological Macromol. 114, 989–997 (2018)

    Article  CAS  Google Scholar 

  66. Jiang, H.L., Hu, Y.Q., Li, Y., Zhao, P.C., Zhu, K., Chen, W.L.: A facile technique to prepare biodegradable coaxial electrospun nanofibers for controlled release of bioactive agents. J. Controlled Release 108, 237–243 (2005)

    Article  CAS  Google Scholar 

  67. Komur, B., Bayrak, F., Ekren, N., Eroglu, M.S., Oktar, F.N., Sinirlioglu, Z.A., Yucel, S., Guler, O., Gunduz, O.: Starch/PCL composite nanofibers by co-axial electrospinning technique for biomedical applications. Biomed. Eng. Online 16, 40 (2017)

    Article  CAS  Google Scholar 

  68. Chen, R., Huang, C., Ke, Q.F., He, C.L., Wang, H.S., Mo, X.M.: Preparation and characterization of coaxial electrospun thermoplastic polyurethane/collagen compound nanofibers for tissue engineering applications. Coll. Surf. B Bioninterfaces 79, 315–325 (2010)

    Article  CAS  Google Scholar 

  69. Yu, D.G., Li, J.J., Williams, G.R., Zhao, M.: Electrospun amorphous solid dispersions of poorly watersoluble drugs: a review. J. Control. Release 292, 91–110 (2018)

    Article  CAS  Google Scholar 

  70. Zhou, H.L., Shi, Z.R., Wan, X., Fang, H.L., Yu, D.-G., Chen, X.H., Liu, P.: The relationships between process parameters and polymeric nanofibers fabricated using a modified coaxial electrospinning. Nanomater. 9, 843 (2019)

    Article  Google Scholar 

  71. Wang, M.L., Hai, T., Feng, Z.B., Yu, D.-G., Yang, Y.Y., Bligh, S.W.A.: The relationships between the working fluids, process characteristics and products from the modified coaxial electrospinning of zein. Polymers 11, 1287 (2019)

    Article  CAS  Google Scholar 

  72. Lavalle, M., Bedia, J., Ruiz-Rosas, R., Rodríguez-Mirasol, J., Cordero, T., Otero, J.C., Marquez, M., Barrero, A., Loscertales, I.G.: Filled and hollow carbon nanofibers by coaxial electrospinning of alcell lignin without binder polymers. Adv. Mater. 19, 4292–4296 (2007)

    Article  Google Scholar 

  73. Yang, J., Wang, K., Yu, D.-G., Yang, Y.Y., Bligh, S.W.A., Williams, G.R.: Electrospun Janus nanofibers loaded with a drug and inorganic nanoparticles as an effective antibacterial wound dressing. Mater. Sci. Eng. C 111, 110805 (2020)

    Article  CAS  Google Scholar 

  74. Yu, D.-G., Li, J.-J., Zhang, M., Williams, G.R.: High-quality Janus nanofibers prepared using three-fluid electrospinning. Chem. Commun. 53, 4542–4545 (2017)

    Article  CAS  Google Scholar 

  75. Chen, G.Y., Xu, Y., Yu, D.-G., Zhang, D.F., Chatterton, N.P., White, K.N.: Structure-tunable Janus fibers fabricated using spinnerets with varying port angles. Chem. Commun. 51, 4623–4626 (2015)

    Article  CAS  Google Scholar 

  76. Wang, M.L., Li, D., Li, J., Li, S.Y., Chen, Z., Yu, D.-G., Liu, Z.P., Guo, J.Z.: Electrospun Janus zein–PVP nanofibers provide a two-stage controlled release of poorly water-soluble drugs. Mater. Des. 196, 109075 (2020)

    Article  CAS  Google Scholar 

  77. Jirsak, O., Sanetrnik, F., Lukas, D., Kotek, V., Martinova, L., Chaloupek, J.: Method of nanofibres production from a polymer solution using electrostatic spinning and a device for carrying out the method, patent US 7585437 (2004).

    Google Scholar 

  78. Yalcinkaya, F.: Preparation of various nanofiber layers using wire electrospinning system. Arabian J. Chem. 12, 5162–6172 (2019)

    Article  CAS  Google Scholar 

  79. Döpke, C., Grothe, T., Steblinski, P., Klöcker, M., Sabantina, L., Kosmalska, D., Blachowicz, T., Ehrmann, A.: Magnetic nanofiber mats for data storage and transfer. Nanomaterials 9, 92 (2019)

    Article  Google Scholar 

  80. Grothe, T., Wehlage, D., Böhm, T., Remche, A., Ehrmann, A.: Needleless electrospinning of PAN nanofibre mats. Tekstilec 60, 290–295 (2017)

    Article  Google Scholar 

  81. Zhu, G.C., Zhao, L.Y., Zhu, L.T., Deng, X.Y., Chen, W.L.: Effect of experimental parameters on nanofiber diameter from electrospinning with wire electrodes. IOP Conf. Series Mater Sci. Eng. 230, 012043 (2017)

    Article  Google Scholar 

  82. Wang, X., Niu, H.T., Lin, T., Wang, X.G.: Needleless electrospinning of nanofibers with a conical wire coil. Polym. Eng. Sci. 49, 1582–1586 (2009)

    Article  CAS  Google Scholar 

  83. Prahasti, G., Zulfi, A., Munir, M.M.: Needleless electrospinning system with wire spinneret: an alternative way to control morphology, size, and productivity of nanofibers. Nano Express 1, 010046 (2020)

    Article  Google Scholar 

  84. Holopainen, J., Penttinen, T., Santala, E., Ritala, M.: Needleless electrospinning with twisted wire spinneret. Nanotechnology 26, 025301 (2015)

    Article  CAS  Google Scholar 

  85. Niu, H.T., Lin, T.: Fiber generators in needleless electrospinning. J. Nanomater. 2012, 725950 (2012)

    Article  Google Scholar 

  86. Yarin, A.L., Zussman, E.: Upward needleless electrospinning of multiple nanofibers. Polymer 45, 2977–2980 (2004)

    Article  CAS  Google Scholar 

  87. Jiang, G.J., Qin, X.H.: An improved free surface electrospinning for high throughput manufacturing of core-shell nanofibers. Mater. Lett. 128, 259–262 (2014)

    Article  CAS  Google Scholar 

  88. Jiang, G.J., Zhang, S., Wang, Y.T., Qin, X.H.: An improved free surface electrospinning with micro-bubble solution system for massive production of nanofibers. Mater. Lett. 144, 22–25 (2015)

    Article  CAS  Google Scholar 

  89. Kostakova, E., Meszaros, L., Gregr, J.: Composite nanofibers produced by modified needleless electrospinning. Mater. Lett. 63, 2419–2422 (2009)

    Article  CAS  Google Scholar 

  90. Fang, Y., Xu, L.: Four self-made free surface electrospinning devices for high-throughput preparation of high-quality nanofibers. Beilstein J. Nanotechnol. 10, 2261–2274 (2019)

    Article  CAS  Google Scholar 

  91. Tang, S., Zeng, Y.C., Wang, X.H.: Splashing needleless electrospinning of nanofibers. Polym. Eng. Sci. 50, 2252–2257 (2010)

    Article  CAS  Google Scholar 

  92. Li, D., Wang, Y., Xia, Y.: Electrospinning nanofibers as uniaxially aligned arrays and layer-by-layer stacked films. Adv. Mater. 16, 361–366 (2004)

    Article  Google Scholar 

  93. Storck, J.L., Grothe, T., Mamun, A., Sabantina, L., Klöcker, M., Blachowicz, T., Ehrmann, A.: Orientation of electrospun magnetic nanofibers near conductive areas. Materials 13, 47 (2020)

    Article  CAS  Google Scholar 

  94. Ishii, Y., Sakai, H., Murata, H.: A new electrospinning method to control the number and a diameter of uniaxially aligned polymer fibers. Mater. Lett. 62, 3370–3372 (2008)

    Article  CAS  Google Scholar 

  95. Liu, Y., Zhang, X., Xia, Y., Yang, H.: Magnetic-field-assisted electrospinning of aligned straight and wavy polymeric nanofibers. Adv. Mater. 22, 2454–2457 (2010)

    Article  CAS  Google Scholar 

  96. Xu, S.S., Zhang, J., He, A.H., Li, J.X., Zhang, H., Han, C.C.: Electrospinning of native cellulose from nonvolatile solvent system. Polymer. 49, 2911–2917 (2008)

    Google Scholar 

  97. Wang, X., Zhang, K., Zhu, M., et al.: Continuous polymer nanofiber yarns prepared by self-bundling electrospinning method. Polymer 49, 2755–2761 (2008)

    Article  CAS  Google Scholar 

  98. Smit, E., Buttner, U., Sanderson, R.D.: Continuous yarns from electrospun fibers. Polymer 46, 2419–2423 (2005)

    Article  CAS  Google Scholar 

  99. Dalton, P.D., Klee, D., Möller, M.: Electrospinning with dual collection rings. Polymer 46, 611–614 (2005)

    Article  CAS  Google Scholar 

  100. Pan, H., Li, L., Hu, L., Cui, X.: Continuous aligned polymer fibers produced by a modified electrospinning method. Polymer 47, 4901–4904 (2006)

    Article  CAS  Google Scholar 

  101. Huang, Y., Bu, N., Duan, Y., Pan, Y., Liu, H., Yin, Z., Xiong, Y.: Electrohydrodynamic direct-writing. Nanoscale 5, 12007–12017 (2013)

    Article  CAS  Google Scholar 

  102. He, X.X., Zheng, J., Yu, G.F., You, M.H., Yu, M., Ning, X., Long, Y.Z.: Near-field electrospinning: progress and applications. J. Phys. Chem C 121, 8663–8678 (2017)

    Article  CAS  Google Scholar 

  103. Xin, Y., Reneker, D.H.: Hierarchical polystyrene patterns produced by electrospinning. Polymer 53, 4254–4261 (2012)

    Article  CAS  Google Scholar 

  104. Zheng, G.F., Li, W.W., Wang, X., Wu, D., Sun, D.H., Lin, L.W.: Precision deposition of a nanofibre by near-field electrospinning. J. Phys. D. Appl. Phys. 43, 415501 (2010)

    Article  Google Scholar 

  105. Fuh, Y.K., Wang, B.S.: Near field sequentially electrospun three-dimensional piezoelectric fibers arrays for self-powered sensors of human gesture recognition. Nano Energy 30, 677–683 (2016)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea Ehrmann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Blachowicz, T., Ehrmann, A. (2023). Methods and Engineering of Electrospinning. In: Das, R. (eds) Electrospun Nanofibrous Technology for Clean Water Production. Nanostructure Science and Technology. Springer, Singapore. https://doi.org/10.1007/978-981-99-5483-4_2

Download citation

Publish with us

Policies and ethics