Skip to main content

Application of Nano-enhanced PCMs in Electronic Devices

  • Chapter
  • First Online:
Nano Enhanced Phase Change Materials

Abstract

The chapter investigates the growing importance of Nano-Enhanced Phase Change Materials (NePCMs) in the cooling of electronic devices. Following an introduction to PCMs and nanoparticles, the chapter discusses the beneficial aspects of NePCMs that make them suited for regulating the thermal parameters of electronic systems. Following that, the chapter delves into several NePCM-based thermal management methods for electronic equipment, such as heat absorbers, heat sinks, and heat sinks with heat pipes. NePCMs are explored in the context of specific applications as thermal management solutions in components such as IC chips and boards, transistors and laser diodes, and batteries. The chapter finishes by stressing the potential of NePCMs in heat control in electronics and suggesting future research and development possibilities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bianco V, De Rosa M, Vafai K (2022) Phase-change materials for thermal management of electronic devices. Appl Therm Eng 214(May):118839. https://doi.org/10.1016/j.applthermaleng.2022.118839

  2. Meng X, Zhu J, Wei X, Yan Y (2018) Natural convection heat transfer of a straight-fin heat sink. Int J Heat Mass Transf 123:561–568. https://doi.org/10.1016/j.ijheatmasstransfer.2018.03.002

    Article  Google Scholar 

  3. Zhang Z, Wang X, Yan Y (2021) A review of the state-of-the-art in electronic cooling. e-Prime 1(August):100009. https://doi.org/10.1016/j.prime.2021.100009

  4. Hamadneh N, Khan W, Tilahun S (2018) Optimization of microchannel heat sinks using prey-predator algorithm and artificial neural networks. Machines 6(2). https://doi.org/10.3390/machines6020026

  5. Shukla KN (2015) Heat pipe for aerospace applications—an overview. J Electron Cool Therm Control 05(01):1–14. https://doi.org/10.4236/jectc.2015.51001

    Article  ADS  Google Scholar 

  6. Ahn JH, Rhi SH, Lee JS, Kim KB (2022) Thermal investigations of hemispherical shell vapor chamber heat sink. Energies 15(3). https://doi.org/10.3390/en15031161

  7. Du Y, Xu J, Paul B, Eklund P (2018) Flexible thermoelectric materials and devices. Appl Mater Today 12:366–388. https://doi.org/10.1016/j.apmt.2018.07.004

    Article  Google Scholar 

  8. Joudeh N, Linke D (2022) Nanoparticle classification, physicochemical properties, characterization, and applications: a comprehensive review for biologists. J Nanobiotechnol 20(1):1–29. https://doi.org/10.1186/s12951-022-01477-8

    Article  Google Scholar 

  9. Yousefi E, Najafi Khaboshan H, Jaliliantabar F, Adam Abdullah A (2022) The effect of different enclosure materials and NePCMs on performance of battery thermal management system. Mater Today Proc 75:1–9. https://doi.org/10.1016/j.matpr.2022.09.261

  10. Arshad A, Jabbal M, Faraji H, Talebizadehsardari P, Bashir MA, Yan Y (2022) Thermal performance of a phase change material-based heat sink in presence of nanoparticles and metal-foam to enhance cooling performance of electronics. J Energy Storage 48(November):103882. https://doi.org/10.1016/j.est.2021.103882

  11. Ahmed T, Bhouri M, Groulx D, White MA (2018) Passive thermal management of tablet PCs using phase change materials: continuous operation. Int J Therm Sci 134(March):101–115. https://doi.org/10.1016/j.ijthermalsci.2018.08.010

    Article  Google Scholar 

  12. Shaikh S, Lafdi K (2010) C/C composite, carbon nanotube and paraffin wax hybrid systems for the thermal control of pulsed power in electronics. Carbon NY 48(3):813–824. https://doi.org/10.1016/j.carbon.2009.10.034

    Article  Google Scholar 

  13. Kumar A, Kothari R, Sahu SK, Kundalwal SI (2021) Thermal performance of heat sink using nano-enhanced phase change material (NePCM) for cooling of electronic components. Microelectron Reliab 121(April):114144. https://doi.org/10.1016/j.microrel.2021.114144

  14. Bayat M, Faridzadeh MR, Toghraie D (2018) Investigation of finned heat sink performance with nano enhanced phase change material (NePCM). Therm Sci Eng Prog 5(October):50–59. https://doi.org/10.1016/j.tsep.2017.10.021

  15. Fayyaz H, Hussain A, Ali I, Shahid H, Ali HM (2022) Experimental analysis of nano-enhanced phase-change material with different configurations of heat sinks. Materials (Basel) 15(22). https://doi.org/10.3390/ma15228244

  16. Murali Naik J et al (2022) Investigating the performance of a NMPCM integrated heat sink for chipset cooling. Mater Today Proc 66:1255–1259. https://doi.org/10.1016/j.matpr.2022.05.123

  17. Farzanehnia A, Khatibi M, Sardarabadi M, Passandideh-Fard M (2019) Experimental investigation of multiwall carbon nanotube/paraffin based heat sink for electronic device thermal management. Energy Convers Manag 179:314–325. https://doi.org/10.1016/j.enconman.2018.10.037

  18. Joseph M, Sajith V (2019) Graphene enhanced paraffin nanocomposite based hybrid cooling system for thermal management of electronics. Appl Therm Eng 163(August):114342. https://doi.org/10.1016/j.applthermaleng.2019.114342

  19. Jaworski M (2012) Thermal performance of heat spreader for electronics cooling with incorporated phase change material. Appl Therm Eng 35(1):212–219. https://doi.org/10.1016/j.applthermaleng.2011.10.036

    Article  Google Scholar 

  20. Suresh Kumar KR, Dinesh R, Ameelia Roseline A, Kalaiselvam S (2017) Performance analysis of heat pipe aided NEPCM heat sink for transient electronic cooling. Microelectron Reliab 73:1–13. https://doi.org/10.1016/j.microrel.2017.04.006

  21. Yin H, Gao X, Ding J, Zhang Z, Fang Y (2010) Thermal management of electronic components with thermal adaptation composite material. Appl Energy 87(12):3784–3791. https://doi.org/10.1016/j.apenergy.2010.06.007

    Article  Google Scholar 

  22. Krishna J, Kishore PS, Solomon AB (2017) Heat pipe with nano enhanced-PCM for electronic cooling application. Exp Therm Fluid Sci 81:84–92. https://doi.org/10.1016/j.expthermflusci.2016.10.014

    Article  Google Scholar 

  23. Zhao J, Rao Z, Liu C, Li Y (2016) Experiment study of oscillating heat pipe and phase change materials coupled for thermal energy storage and thermal management. Int J Heat Mass Transf 99:252–260. https://doi.org/10.1016/j.ijheatmasstransfer.2016.03.108

    Article  Google Scholar 

  24. Jalil JM, Mahdi HS, Allawy AS (2022) Cooling performance investigation of PCM integrated into heat sink with nano particles addition. J Energy Storage 55(PA):105466. https://doi.org/10.1016/j.est.2022.105466

  25. Uniti CS, Uniti CS, Uniti CS, Ingegneria D (2017) MNHMT2016-6613, pp 1–10

    Google Scholar 

  26. Manoj Kumar P et al (2022) Experimental analysis of a heat sink for electronic chipset cooling using a nano improved PCM (NIPCM). Mater Today Proc 56:1527–1531. https://doi.org/10.1016/j.matpr.2022.01.178

  27. Alimohammadi M, Aghli Y, Alavi ES, Sardarabadi M, Passandideh-Fard M (2017) Experimental investigation of the effects of using nano/phase change materials (NPCM) as coolant of electronic chipsets, under free and forced convection. Appl Therm Eng 111:271–279. https://doi.org/10.1016/j.applthermaleng.2016.09.028

    Article  Google Scholar 

  28. Chang T, Lee S, Fuh Y, Peng Y, Lin Z (2017) PCM based heat sinks of paraffin/nanoplatelet graphite composite for thermal management of IGBT. Appl Therm Eng 112:1129–1136. https://doi.org/10.1016/j.applthermaleng.2016.11.010

    Article  Google Scholar 

  29. Luo J, Zou D, Wang Y, Wang S, Huang L (2022) Battery thermal management systems (BTMs ) based on phase change material (PCM): a comprehensive review. 430(July)

    Google Scholar 

  30. Chen J et al (2019) Effects of different phase change material thermal management strategies on the cooling performance of the power lithium ion batteries: a review. J Power Sources 442(May):227228. https://doi.org/10.1016/j.jpowsour.2019.227228

  31. Jiang ZY, Li HB, Qu ZG, Zhang JF (2022) Recent progress in lithium-ion battery thermal management for a wide range of temperature and abuse conditions. Int J Hydrog Energy 47(15):9428–9459. https://doi.org/10.1016/j.ijhydene.2022.01.008

    Article  Google Scholar 

  32. Xiong T, Zheng L, Shah KW (2020) Nano-enhanced phase change materials (NePCMs): a review of numerical simulations. Appl Therm Eng 178:115492. https://doi.org/10.1016/J.APPLTHERMALENG.2020.115492

    Article  Google Scholar 

  33. Jilte R, Afzal A, Panchal S (2021) A novel battery thermal management system using nano-enhanced phase change materials. Energy 219:119564. https://doi.org/10.1016/j.energy.2020.119564

    Article  Google Scholar 

  34. Shi S et al (2017) Non-steady experimental investigation on an integrated thermal management system for power battery with phase change materials. Energy Convers Manag 138:84–96. https://doi.org/10.1016/j.enconman.2017.01.069

    Article  Google Scholar 

  35. Zou D et al (2019) Preparation of a novel composite phase change material (PCM) and its locally enhanced heat transfer for power battery module. Energy Convers Manag 180(September):1196–1202. https://doi.org/10.1016/j.enconman.2018.11.064

  36. Zhang B, Zhang Y, Li K, Ma C, Yuan B (2022) Novel segregated-structure phase change materials with binary fillers and the application effect in battery thermal management. J Energy Storage 54(April):105336. https://doi.org/10.1016/j.est.2022.105336

  37. Chen M et al (2022) Preparation of thermally conductive composite phase change materials and its application in lithium-ion batteries thermal management. J Energy Storage 52(PA):104857. https://doi.org/10.1016/j.est.2022.104857

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Imtiaz Ali Laghari .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Laghari, I.A., Bhutto, Y.A., Koondhar, M.A., Shah, S.A.A. (2023). Application of Nano-enhanced PCMs in Electronic Devices. In: Said, Z., Pandey, A.K. (eds) Nano Enhanced Phase Change Materials. Materials Horizons: From Nature to Nanomaterials. Springer, Singapore. https://doi.org/10.1007/978-981-99-5475-9_9

Download citation

Publish with us

Policies and ethics