Skip to main content

Application of Nano-enhanced PCMs in Buildings

  • Chapter
  • First Online:
Nano Enhanced Phase Change Materials

Abstract

The implementation of effective thermal energy storage (TES) systems provides an opportunity to improve building energy efficiency and thereby reduce commercial and residential energy consumption. However, in recent years, researchers have concentrated their efforts on the adoption of latent heat storage materials, which, if properly implemented, might have a great potential for reducing energy demand without requiring the area that sensible storage materials occupy. Nano-enhanced phase change materials (NEPCMs) are gaining popularity as a way to overcome one of the main challenges, i.e., poor thermal conductivity (kT) to phase change material (PCM) adoption in the building sector. This chapter provides a discussion on generic challenges with the synthesis and applications of this new class of materials in buildings for better thermal management and energy efficiency. A comprehensive outline of current research on NEPCM-integrated buildings and their applications is presented. Along with a critical examination of the aforementioned aspects, the present study emphasizes the future scope of research in this paradigm. This study also provides a brief overview of different integration techniques such as direct impregnation, immersion through the material's pores, encapsulation, and shape stabilizing techniques of PCM/NEPCM in the construction of buildings. The study revealed that the melting and solidification rates of this new class of material are higher than those of pure PCM. More study is required to comprehend the fundamental mechanisms that enhance PCM's thermal conductivity through the dispersion of nanomaterials, as well as to look into how these mechanisms affect the performance of buildings. This study is intended to add to our understanding of the fundamentals and potential applications of NEPCMs in the building sector.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

HVAC:

Heating, ventilation, and air conditioning

CNF:

Carbon nanofiber

TES:

Thermal energy storage

MWCNT:

Multiwalled carbon nanotubes

CNT:

Carbon nanotube

k T :

Thermal conductivity

NEPCM:

Nano-enhanced phase change material

Ф w :

Weight fraction of nanomaterial

Ф v :

Volume fraction of nanomaterial

PCM:

Phase change material

d n :

Diameter of nanomaterial

T p :

Phase change temperature

References

  1. International Energy Agency (2013) Directorate of sustainable energy policy. Transition to sustainable buildings: strategies and opportunities to 2050. Organization for Economic

    Google Scholar 

  2. International Energy Agency (2015) Secretariat. Energy technology perspectives 2015: mobilising innovation to accelerate climate action. International Energy Agency

    Google Scholar 

  3. LaFrance M (2013) Technology roadmap: energy efficient building envelopes. IEA, Paris

    Google Scholar 

  4. Navarro L, De Gracia A, Colclough S, Browne M, McCormack SJ, Griffiths P, Cabeza LF (2016) Thermal energy storage in building integrated thermal systems: a review. Part 1. Active storage systems. Renew Energy 88:526–547

    Google Scholar 

  5. Horizon D (2020) Work programme 2016–2017 in the area of societal challenge 3 secure. Clean and Efficient Energy

    Google Scholar 

  6. Faraj K, Khaled M, Faraj J, Hachem F, Castelain C (2020) Phase change material thermal energy storage systems for cooling applications in buildings: a review. Renew Sustain Energy Rev 119:109579

    Article  Google Scholar 

  7. Lee KO, Medina MA, Sun X, Jin X (2018) Thermal performance of phase change materials (PCM)-enhanced cellulose insulation in passive solar residential building walls. Sol Energy 163:113–121

    Article  ADS  Google Scholar 

  8. Zhou D, Zhao CY, Tian Y (2012) Review on thermal energy storage with phase change materials (PCMs) in building applications. Appl Energy 92:593–605

    Article  Google Scholar 

  9. Özonur Y, Mazman M, Paksoy HÖ, Evliya H (2006) Microencapsulation of coco fatty acid mixture for thermal energy storage with phase change material. Int J Energy Res 30(10):741–749

    Article  Google Scholar 

  10. Jelle BP, Kalnæs SE (2017) Phase change materials for application in energy-efficient buildings. In: Cost-effective energy efficient building retrofitting, pp 57–118

    Google Scholar 

  11. Yinping Z, Guobing Z, Rui Y, Kunping L (2006) Our research on shape-stabilized PCM in energy-efficient buildings. In: Proceedings of ECOSTOCK-2006, 10th international conference on thermal energy storage, pp 357–365

    Google Scholar 

  12. Höhlein S, König-Haagen A, Brüggemann D (2018) Macro-encapsulation of inorganic phase-change materials (PCM) in metal capsules. Materials 11(9):1752

    Article  ADS  Google Scholar 

  13. Hawlader MNA, Uddin MS, Khin MM (2003) Microencapsulated PCM thermal-energy storage system. Appl Energy 74(1–2):195–202

    Article  Google Scholar 

  14. Tyagi VV, Kaushik SC, Tyagi SK, Akiyama T (2011) Development of phase change materials based microencapsulated technology for buildings: a review. Renew Sustain Energy Rev 15(2):1373–1391

    Article  Google Scholar 

  15. Cabeza LF, Castell A, Barreneche CD, De Gracia A, Fernández AI (2011) Materials used as PCM in thermal energy storage in buildings: a review. Renew Sustain Energy Rev 15(3):1675–1695

    Article  Google Scholar 

  16. Fan YF, Zhang XX, Wang XC, Li J, Zhu QB (2004) Super-cooling prevention of microencapsulated phase change material. Thermochim Acta 413(1–2):1–6

    Article  Google Scholar 

  17. Kim Y, Norford LK (2017) Optimal use of thermal energy storage resources in commercial buildings through price-based demand response considering distribution network operation. Appl Energy 193:308–324

    Article  Google Scholar 

  18. Silva T, Vicente R, Soares N, Ferreira V (2012) Experimental testing and numerical modelling of masonry wall solution with PCM incorporation: a passive construction solution. Energy Build 49:235–245

    Google Scholar 

  19. Meng E, Yu H, Zhou B (2017) Study of the thermal behavior of the composite phase change material (PCM) room in summer and winter. Appl Therm Eng 126:212–225

    Article  Google Scholar 

  20. Kong X, Lu S, Huang J, Cai Z, Wei S (2013) Experimental research on the use of phase change materials in perforated brick rooms for cooling storage. Energy Build 62:597–604

    Article  Google Scholar 

  21. Kumar K, Kumar R, Bharj RS, Mondal PK (2021) Irreversibility analysis of the convective flow through corrugated channels: a comprehensive review. Eur Phys J Plus 136(4):1–40

    Article  Google Scholar 

  22. Tyagi PK, Kumar R, Mondal PK (2020) A review of the state-of-the-art nanofluid spray and jet impingement cooling. Phys Fluids 32(12):121301

    Article  ADS  Google Scholar 

  23. Tyagi PK, Kumar R, Said Z (2022) Recent advances on the role of nanomaterials for improving the performance of photovoltaic thermal systems: trends, challenges and prospective. Nano Energy 106834

    Google Scholar 

  24. Ali HM, Babar H, Shah TR, Sajid MU, Qasim MA, Javed S (2018) Preparation techniques of TiO2 nanofluids and challenges: a review. Appl Sci 8(4):587

    Article  Google Scholar 

  25. Tyagi PK, Kumar R (2021) Emerging trends on the implementation of nanomaterials for improving the performance of photovoltaic thermal systems: energetic, exergetic, environmental, and economic perspectives. Energ Technol 9(12):2100619

    Article  Google Scholar 

  26. Li L, Zhang Y, Ma H, Yang M (2008) An investigation of molecular layering at the liquid-solid interface in nanofluids by molecular dynamics simulation. Phys Lett A 372(25):4541–4544

    Article  ADS  MATH  Google Scholar 

  27. Nedjar B (2002) An enthalpy-based finite element method for nonlinear heat problems involving phase change. Comput Struct 80(1):9–21

    Article  Google Scholar 

  28. Rao Z, Wang S, Peng F (2012) Self-diffusion of the nano-encapsulated phase change materials: a molecular dynamics study. Appl Energy 100:303–308

    Article  Google Scholar 

  29. Rathore PKS, Shukla SK (2019) Potential of macroencapsulated PCM for thermal energy storage in buildings: a comprehensive review. Constr Build Mater 225:723–744

    Article  Google Scholar 

  30. Lizana J, Chacartegui R, Barrios-Padura A, Ortiz C (2018) Advanced low-carbon energy measures based on thermal energy storage in buildings: a review. Renew Sustain Energy Rev 82:3705–3749

    Article  Google Scholar 

  31. Halford CK, Boehm RF (2007) Modeling of phase change material peak load shifting. Energy Build 39(3):298–305

    Article  Google Scholar 

  32. Zalba B, Marı́n JM, Cabeza LF, Mehling H (2004) Free-cooling of buildings with phase change materials. Int. J. Refrig 27(8):839–849

    Google Scholar 

  33. Teng TP, Yu CC (2012) Characteristics of phase-change materials containing oxide nano-additives for thermal storage. Nanoscale Res Lett 7(1):1–10

    Article  MathSciNet  Google Scholar 

  34. Wu SY, Wang H, Xiao S, Zhu DS (2012) An investigation of melting/freezing characteristics of nanoparticle-enhanced phase change materials. J Therm Anal Calorim 110(3):1127–1131

    Article  Google Scholar 

  35. Li M (2013) A nano-graphite/paraffin phase change material with high thermal conductivity. Appl Energy 106:25–30

    Article  Google Scholar 

  36. Jesumathy S, Udayakumar M, Suresh S (2012) Experimental study of enhanced heat transfer by addition of CuO nanoparticle. Heat Mass Transf 48(6):965–978

    Article  ADS  Google Scholar 

  37. Sciacovelli A, Colella F, Verda V (2013) Melting of PCM in a thermal energy storage unit: numerical investigation and effect of nanoparticle enhancement. Int J Energy Res 37(13):1610–1623

    Article  Google Scholar 

  38. Cui Y, Liu C, Hu S, Yu X (2011) The experimental exploration of carbon nanofiber and carbon nanotube additives on thermal behavior of phase change materials. Sol Energy Mater Sol Cells 95(4):1208–1212

    Article  Google Scholar 

  39. Kumaresan V, Chandrasekaran P, Nanda M, Maini AK, Velraj R (2013) Role of PCM based nanofluids for energy efficient cool thermal storage system. Int J Refrig 36(6):1641–1647

    Article  Google Scholar 

  40. Teng TP (2013) Thermal conductivity and phase-change properties of aqueous alumina nanofluid. Energy Convers Manag 67:369–375

    Article  Google Scholar 

  41. Biswas K, Lu J, Soroushian P, Shrestha S (2014) Combined experimental and numerical evaluation of a prototype nano-PCM enhanced wallboard. Appl Energy 131:517–529

    Article  Google Scholar 

  42. Sayyar M, Weerasiri RR, Soroushian P, Lu J (2014) Experimental and numerical study of shape-stable phase-change nanocomposite toward energy-efficient building constructions. Energy Build 75:249–255

    Article  Google Scholar 

  43. Constantinescu M, Dumitrache L, Constantinescu D, Anghel EM, Popa VT, Stoica A, Olteanu M (2010) Latent heat nano composite building materials. Eur Polymer J 46(12):2247–2254

    Article  Google Scholar 

  44. Guo CX (2011) Application study of nanoparticle-enhanced phase change material in ceiling board. In: Advanced materials research, vol 150. Trans Tech Publications Ltd., pp 723–726

    Google Scholar 

  45. Parameshwaran R, Kalaiselvam S (2014) Energy conservative air conditioning system using silver nano-based PCM thermal storage for modern buildings. Energy Build 69:202–212

    Article  Google Scholar 

  46. Parameshwaran R, Deepak K, Saravanan R, Kalaiselvam S (2014) Preparation, thermal and rheological properties of hybrid nanocomposite phase change material for thermal energy storage. Appl Energy 115:320–330

    Article  Google Scholar 

  47. Parameshwaran R, Jayavel R, Kalaiselvam S (2013) Study on thermal properties of organic ester phase-change material embedded with silver nanoparticles. J Therm Anal Calorim 114(2):845–858

    Article  Google Scholar 

  48. Kalaiselvam S, Parameshwaran R, Harikrishnan S (2012) Analytical and experimental investigations of nanoparticles embedded phase change materials for cooling application in modern buildings. Renew Energy 39(1):375–387

    Article  Google Scholar 

  49. Colella F, Sciacovelli A, Verda V (2012) Numerical analysis of a medium scale latent energy storage unit for district heating systems. Energy 45(1):397–406

    Article  Google Scholar 

  50. TermoDeck (n.d.) Thermal energy storage for energy efficient building. http://www.termodeck.com/

  51. Andersson L, Engström A, Lindström G (2012) Energy-efficient passive house using thermal mass to achieve high thermal comfort. REHVA Eur HVAC J 49(1):44–49

    Google Scholar 

  52. Barton P, Beggs CB, Sleigh PA (2002) A theoretical study of the thermal performance of the TermoDeck hollow core slab system. Appl Therm Eng 22(13):1485–1499

    Article  Google Scholar 

  53. PCMProducts (n.d.) PCM products limited. http://www.pcmproducts.net/

  54. ThermaCool (n.d.) Phase change technology. http://www.therma.cool/

  55. Emcoklima (n.d.) Emcoklima. http://www.emco-klima.com/index.html

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Rajan Kumar or Zafar Said .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tyagi, P.K., Kumar, R., Said, Z., Rathore, P.K.S. (2023). Application of Nano-enhanced PCMs in Buildings. In: Said, Z., Pandey, A.K. (eds) Nano Enhanced Phase Change Materials. Materials Horizons: From Nature to Nanomaterials. Springer, Singapore. https://doi.org/10.1007/978-981-99-5475-9_8

Download citation

Publish with us

Policies and ethics