Skip to main content

Applications of Nano-enhanced PCMs in Solar Energy

  • Chapter
  • First Online:
Nano Enhanced Phase Change Materials

Part of the book series: Materials Horizons: From Nature to Nanomaterials ((MHFNN))

  • 135 Accesses

Abstract

The potential applications of nano-enhanced Phase Change Materials (Ne-PCMs) in various solar energy systems are discussed in this book chapter. Ne-PCMs have demonstrated exceptional potential, with a focus on their use in solar cookers. According to studies, their incorporation greatly improves solar cooker efficiency by reducing cooking time and increasing heat transmission rate. Furthermore, Ne-PCMs are used in solar collectors such as solar water heaters, solar air warmers and solar desalination systems, where they improve thermal performance by increasing heat storage capacity and reducing heat losses. Ne-PCMs have shown the ability to increase thermal conductivity, hence improving heat transfer rate and overall thermal stability. Finally, the use of Ne-PCMs in various solar energy applications has been proven to significantly improve energy efficiency and storage capacity, both of which are critical in the shift to sustainable and renewable energy sources.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Shoeibi S, Kargarsharifabad H, Mirjalily SAA, Sadi M, Arabkoohsar A (2022) A comprehensive review of nano-enhanced phase change materials on solar energy applications. J Energy Storage 50:104262. https://doi.org/10.1016/j.est.2022.104262

    Article  Google Scholar 

  2. Kumar A, Tiwari AK (2022) Solar-assisted post-combustion carbon-capturing system retrofitted with coal-fired power plant towards net-zero future: a review. J CO2 Util 65:102241. https://doi.org/10.1016/j.jcou.2022.102241

  3. Heffron R, Halbrügge S, Körner M-F, Obeng-Darko NA, Sumarno T, Wagner J et al (2021) Justice in solar energy development. Sol Energy 218:68–75. https://doi.org/10.1016/j.solener.2021.01.072

  4. Zomer C, Custódio I, Goulart S, Mantelli S, Martins G, Campos R et al (2020) Energy balance and performance assessment of PV systems installed at a positive-energy building (PEB) solar energy research centre. Sol Energy 212:258–274. https://doi.org/10.1016/j.solener.2020.10.080

  5. Zhang J, Zhu T (2022) Systematic review of solar air collector technologies: performance evaluation, structure design and application analysis. Sustain Energy Technol Assess 54:102885. https://doi.org/10.1016/j.seta.2022.102885

    Article  Google Scholar 

  6. Mund C, Rathore SK, Sahoo RK (2021) A review of solar air collectors about various modifications for performance enhancement. Sol Energy 228:140–167. https://doi.org/10.1016/j.solener.2021.08.040

    Article  ADS  Google Scholar 

  7. Kumar A, Gupta PR, Tiwari AK, Said Z (2022) Performance evaluation of small scale solar organic Rankine cycle using MWCNT + R141b nanorefrigerant. Energy Convers Manag 260:115631. https://doi.org/10.1016/j.enconman.2022.115631

  8. Faisal Ahmed S, Khalid M, Vaka M, Walvekar R, Numan A, Khaliq Rasheed A et al (2021) Recent progress in solar water heaters and solar collectors: a comprehensive review. Therm Sci Eng Prog 25:100981. https://doi.org/10.1016/j.tsep.2021.100981

    Article  Google Scholar 

  9. Vengadesan E, Senthil R (2020) A review on recent development of thermal performance enhancement methods of flat plate solar water heater. Sol Energy 206:935–961. https://doi.org/10.1016/j.solener.2020.06.059

    Article  ADS  Google Scholar 

  10. Bhagwati A, Shah M, Prajapati M (2023) Emerging technologies to sustainability: a comprehensive study on solar desalination for sustainable development. Sustain Manuf Serv Econ 2023:100007. https://doi.org/10.1016/j.smse.2022.100007

  11. Tiwari AK, Kumar A, Said Z (2022) Chapter 35—Nanomaterials for electromagnetic interference shielding application. In: Song H, Nguyen TA, Yasin G, Singh NB, Gupta RK (eds) Nanotechnology in the Automotive Industry. Elsevier, pp 749–72. https://doi.org/10.1016/B978-0-323-90524-4.00035-9

  12. Leong KY, Abdul Rahman MR, Gurunathan BA (2019) Nano-enhanced phase change materials: a review of thermo-physical properties, applications and challenges. J Energy Storage 21:18–31. https://doi.org/10.1016/j.est.2018.11.008

    Article  Google Scholar 

  13. Tiwari AK, Kumar A, Said Z (2022) Theoretical analysis and correlations for predicting properties of hybrid nanofluids. Hybrid Nanofluids Prep Char Appl Elsevier 149–170. https://doi.org/10.1016/B978-0-323-85836-6.00007-7

  14. Paul J, Pandey AK, Mishra YN, Said Z, Mishra YK, Ma Z et al (2022) Nano-enhanced organic form stable PCMs for medium temperature solar thermal energy harvesting: recent progresses, challenges, and opportunities. Renew Sustain Energy Rev 161:112321. https://doi.org/10.1016/j.rser.2022.112321

    Article  Google Scholar 

  15. Patel R, Kulkarni KG, Havaldar SN, Deshmukh VN (2023) A review on the factors that decrease the performance of a solar water heater. Mater Today Proc 72:3068–3074. https://doi.org/10.1016/j.matpr.2022.09.064

  16. Kumar S, Tyagi VV, Chopra K, Rejikumar R, Pandey AK (2023) Solar energy materials and solar cells integration of emerging PCMs and nano-enhanced PCMs with different solar water heating systems for sustainable energy future: a systematic review. Sol Energy Mater Sol Cells 254:112237. https://doi.org/10.1016/j.solmat.2023.112237

    Article  Google Scholar 

  17. Punniakodi BMS, Senthil R (2022) Recent developments in nano-enhanced phase change materials for solar thermal storage. Sol Energy Mater Sol Cells 238:111629. https://doi.org/10.1016/j.solmat.2022.111629

  18. Tiwari AK, Kumar A (2023) Tubular solar thermal system: recent development and its utilization. Nanotechnol Appl Sol Energy Syst Wiley 257–271. https://doi.org/10.1002/9781119791232.ch10

  19. Manirathnam AS, Manikandan MKD, Prakash RH, Kumar BK, Amarnath MD (2020) Experimental analysis on solar water heater integrated with Nano composite phase change material (SCi and CuO). Mater Today Proc 37:232–240. https://doi.org/10.1016/j.matpr.2020.05.093

    Article  Google Scholar 

  20. Alshukri MJ, Eidan AA, Najim SI (2021) The influence of integrated Micro-ZnO and Nano-CuO particles/paraffin wax as a thermal booster on the performance of heat pipe evacuated solar tube collector. J Energy Storage 37:102506. https://doi.org/10.1016/j.est.2021.102506

    Article  Google Scholar 

  21. Al-Kayiem HH, Lin SC (2014) Performance evaluation of a solar water heater integrated with a PCM nanocomposite TES at various inclinations. Sol Energy 109:82–92. https://doi.org/10.1016/j.solener.2014.08.021

    Article  ADS  Google Scholar 

  22. Kumar PM, Mylsamy K, Alagar K, Sudhakar K (2020) Investigations on an evacuated tube solar water heater using hybrid-nano based organic phase change material. Int J Green Energy 17:872–883. https://doi.org/10.1080/15435075.2020.1809426

    Article  Google Scholar 

  23. Kumar PM, Mylsamy K (2020) A comprehensive study on thermal storage characteristics of nano-CeO2 embedded phase change material and its influence on the performance of evacuated tube solar water heater. Renew Energy 162:662–676. https://doi.org/10.1016/j.renene.2020.08.122

    Article  Google Scholar 

  24. Mandal SK, Kumar S, Singh PK, Mishra SK, Singh DK (2020) Performance investigation of nanocomposite based solar water heater. Energy 198:117295. https://doi.org/10.1016/j.energy.2020.117295

    Article  Google Scholar 

  25. Chopra K, Tyagi VV, Pathak SK, Tripathi PA, Sharma RK, Singh G et al (2023) Thermal and chemical reliability of paraffin wax and its impact on thermal performance and economic analysis of solar water heater. Energy Sustain Dev 73:39–53. https://doi.org/10.1016/j.esd.2023.01.004

    Article  Google Scholar 

  26. Pathak SK, Tyagi VV, Chopra K, Kalidasan B, Pandey AK, Goel V et al (2023) Energy, exergy, economic and environmental analyses of solar air heating systems with and without thermal energy storage for sustainable development: a systematic review. J Energy Storage 59:106521. https://doi.org/10.1016/j.est.2022.106521

    Article  Google Scholar 

  27. Jawad QA, Mahdy AMJ, Khuder AH, Chaichan MT (2020) Improve the performance of a solar air heater by adding aluminum chip, paraffin wax, and nano-SiC. Case Stud Therm Eng 19:100622. https://doi.org/10.1016/j.csite.2020.100622

    Article  Google Scholar 

  28. Elbrashy A, Aboutaleb F, El-Fakharany M, Essa FA (2022) Experimental study of solar air heater performance with evacuated tubes connected in series and involving nano-copper oxide/paraffin wax as thermal storage enhancer. Environ Sci Pollut Res 4603–4616. https://doi.org/10.1007/s11356-022-22462-6

  29. Habib NA, Ali AJ, Chaichan MT, Kareem M (2021) Carbon nanotubes/paraffin wax nanocomposite for improving the performance of a solar air heating system. Therm Sci Eng Prog 23:100877. https://doi.org/10.1016/j.tsep.2021.100877

    Article  Google Scholar 

  30. Selimefendigil F, Şirin C (2022) Experimental investigation of a parabolic greenhouse dryer improved with copper oxide nano-enhanced latent heat thermal energy storage unit. Int J Energy Res 46:3647–3662. https://doi.org/10.1002/er.7412

  31. SunilRaj BA, Eswaramoorthy M (2019) Experimental study on hybrid natural circulation type solar air heater with paraffin wax based thermal storage. Mater Today Proc 23:49–52. https://doi.org/10.1016/j.matpr.2019.06.381

    Article  Google Scholar 

  32. Singh AK, Agarwal N, Saxena A (2021) Effect of extended geometry filled with and without phase change material on the thermal performance of solar air heater. J Energy Storage 39:102627. https://doi.org/10.1016/j.est.2021.102627

    Article  Google Scholar 

  33. Kumar A, Tiwari AK, Said Z (2021) A comprehensive review analysis on advances of evacuated tube solar collector using nanofluids and PCM. Sustain Energy Technol Assess 47:101417. https://doi.org/10.1016/j.seta.2021.101417

    Article  Google Scholar 

  34. Tiwar AK, Kumar V, Said Z, Paliwal HK (2021) A review on the application of hybrid nanofluids for parabolic trough collector: recent progress and outlook. J Clean Prod 292:126031. https://doi.org/10.1016/j.jclepro.2021.126031

    Article  Google Scholar 

  35. Sheikholeslami M, Farshad SA, Ebrahimpour Z, Said Z (2021) Recent progress on flat plate solar collectors and photovoltaic systems in the presence of nanofluid: a review. J Clean Prod 293:126119. https://doi.org/10.1016/j.jclepro.2021.126119

    Article  Google Scholar 

  36. Pandey KM, Chaurasiya R (2017) A review on analysis and development of solar flat plate collector. Renew Sustain Energy Rev 67:641–650. https://doi.org/10.1016/j.rser.2016.09.078

    Article  Google Scholar 

  37. Hohne PA, Kusakana K, Numbi BP (2019) A review of water heating technologies: an application to the South African context. Energy Rep 5:1–19. https://doi.org/10.1016/j.egyr.2018.10.013

  38. Sharma HK, Kumar S, Kumar S, Verma SK (2022) Performance investigation of flat plate solar collector with nanoparticle enhanced integrated thermal energy storage system. J Energy Storage 55:105681. https://doi.org/10.1016/j.est.2022.105681

    Article  Google Scholar 

  39. Saw CL, Al-Kayiem HH, Owolabi AL (2013) Experimental investigation on the effect of PCM and nano-enhanced PCM of integrated solar collector performance. WIT Trans Ecol Environ 179:899–909. https://doi.org/10.2495/SC130762

  40. Algarni S, Mellouli S, Alqahtani T, Almutairi K, khan A, Anqi A (2020) Experimental investigation of an evacuated tube solar collector incorporating nano-enhanced PCM as a thermal booster. Appl Therm Eng 180:115831. https://doi.org/10.1016/j.applthermaleng.2020.115831

  41. O’Neil TJE, Sobhansarbandi S (2022) Thermal performance investigation of energy storage based U-pipe evacuated tube solar collector: an experimental study. Sustain Energy Technol Assess 52:102146. https://doi.org/10.1016/j.seta.2022.102146

  42. Abokersh MH, El-Morsi M, Sharaf O, Abdelrahman W (2017) On-demand operation of a compact solar water heater based on U-pipe evacuated tube solar collector combined with phase change material. Sol Energy 155:1130–1147. https://doi.org/10.1016/j.solener.2017.07.008

    Article  ADS  Google Scholar 

  43. Elarem R, Alqahtani T, Mellouli S, Aich W, Ben Khedher N, Kolsi L et al (2021) Numerical study of an evacuated tube solar collector incorporating a nano-PCM as a latent heat storage system. Case Stud Therm Eng 24:100859. https://doi.org/10.1016/j.csite.2021.100859

    Article  Google Scholar 

  44. Kalbande VP, Fating G, Mohan M, Rambhad K, Sinha AK (2022) Experimental and theoretical study for suitability of hybrid nano enhanced phase change material for thermal energy storage applications. J Energy Storage 51:104431. https://doi.org/10.1016/j.est.2022.104431

  45. Chaudhari SU, Selokar GR (2020) Thermodynamic investigation of nano-phase change materials as heat transfer fluid-heat exchanger for thermal-energy storage in concentrating solar thermo-electric generation systems. Int J Ambient Energy 41:1587–1593. https://doi.org/10.1080/01430750.2018.1517691

    Article  Google Scholar 

  46. Liu L, Jia Y, Lin Y, Alva G, Fang G (2017) Numerical study of a novel miniature compound parabolic concentrating photovoltaic/thermal collector with microencapsulated phase change slurry. Energy Convers Manag 153:106–114. https://doi.org/10.1016/j.enconman.2017.10.005

  47. Tafavogh M, Zahedi A (2021) Design and production of a novel encapsulated nano phase change materials to improve thermal efficiency of a quintuple renewable geothermal/hydro/biomass/solar/wind hybrid system. Renew Energy 169:358–378. https://doi.org/10.1016/j.renene.2020.12.118

  48. Palanikumar G, Shanmugan S, Chithambaram V, Gorjian S, Pruncu CI, Essa FA et al (2021) Thermal investigation of a solar box-type cooker with nanocomposite phase change materials using flexible thermography. Renew Energy 178:260–282. https://doi.org/10.1016/j.renene.2021.06.022

  49. Papade CV, Kanase-Patil AB (2021) Day and night parabolic concentrating solar cooker using nano-mixed phase change material. In: AIP conference proceedings, vol 2335. https://doi.org/10.1063/5.0043645

  50. Palanikumar G, Shanmugan S, Vengatesan C, Selvaraju P (2019) Evaluation of fuzzy inference in box type solar cooking food image of thermal effect. Environ Sustain Indic 1–2:100002. https://doi.org/10.1016/j.indic.2019.100002

    Article  Google Scholar 

  51. Chaudhary A, Kumar A, Yadav A (2013) Experimental investigation of a solar cooker based on parabolic dish collector with phase change thermal storage unit in Indian climatic conditions. J Renew Sustain Energy 5. https://doi.org/10.1063/1.4794962

  52. Yuksel N, Arabacıgıl B, Avcı A (2012) The thermal analysis of paraffin wax in a box-type solar cooker. J Renew Sustain Energy 4:063126. https://doi.org/10.1063/1.4768547

    Article  Google Scholar 

  53. Geddam S, Dinesh GK, Sivasankar T (2015) Determination of thermal performance of a box type solar cooker. Sol Energy 113:324–331. https://doi.org/10.1016/j.solener.2015.01.014

    Article  ADS  Google Scholar 

  54. Senthil R (2021) Enhancement of productivity of parabolic dish solar cooker using integrated phase change material. Mater Today Proc 34:386–388. https://doi.org/10.1016/j.matpr.2020.02.197

    Article  Google Scholar 

  55. Ahsan A, Fukuhara T (2010) Mass and heat transfer model of tubular solar still. Sol Energy 84:1147–1156. https://doi.org/10.1016/j.solener.2010.03.019

  56. Wang W, Yang X, Fang Y, Ding J, Yan J (2009) Enhanced thermal conductivity and thermal performance of form-stable composite phase change materials by using β-aluminum nitride. Appl Energy 86:1196–1200. https://doi.org/10.1016/j.apenergy.2008.10.020

    Article  Google Scholar 

  57. Abdullah AS, Omara ZM, Essa FA, Alqsair UF, Aljaghtham M, Mansir IB et al (2022) Enhancing trays solar still performance using wick finned absorber, nano- enhanced PCM. Alexandria Eng J 61:12417–12430. https://doi.org/10.1016/j.aej.2022.06.033

    Article  Google Scholar 

  58. Kandeal AW, El-Shafai NM, Abdo MR, Thakur AK, El-Mehasseb IM, Maher I et al (2021) Improved thermo-economic performance of solar desalination via copper chips, nanofluid, and nano-based phase change material. Sol Energy 224:1313–1325. https://doi.org/10.1016/j.solener.2021.06.085

  59. Shoeibi S, Kargarsharifabad H, Rahbar N (2021) Effects of nano-enhanced phase change material and nano-coated on the performance of solar stills. J Energy Storage 42:103061. https://doi.org/10.1016/j.est.2021.103061

  60. Safaei MR, Goshayeshi HR, Chaer I (2019) Solar still efficiency enhancement by using graphene oxide/paraffin nano-PCM. Energies 12:2002. https://doi.org/10.3390/en12102002

    Article  Google Scholar 

  61. Abdelaziz GB, Algazzar AM, El-Said EMS, Elsaid AM, Sharshir SW, Kabeel AE et al (2021) Performance enhancement of tubular solar still using nano-enhanced energy storage material integrated with v-corrugated aluminum basin, wick, and nanofluid. J Energy Storage 41:102933. https://doi.org/10.1016/j.est.2021.102933

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arun Kumar Tiwari .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tiwari, A.K., Kumar, A., Said, Z. (2023). Applications of Nano-enhanced PCMs in Solar Energy. In: Said, Z., Pandey, A.K. (eds) Nano Enhanced Phase Change Materials. Materials Horizons: From Nature to Nanomaterials. Springer, Singapore. https://doi.org/10.1007/978-981-99-5475-9_7

Download citation

Publish with us

Policies and ethics