Skip to main content

Theoretical Analysis and Correlations for Predicting Properties and Evaluation Methods for NePCMs

  • Chapter
  • First Online:
Nano Enhanced Phase Change Materials

Part of the book series: Materials Horizons: From Nature to Nanomaterials ((MHFNN))

  • 136 Accesses

Abstract

This chapter digs into the theoretical analysis and thermophysical property correlations of nano-enhanced phase change materials (NePCMs). It is offered a critical review of both single phase and two-phase approaches, as well as a full investigation of the homogeneous and thermal dispersion models. The chapter also looks at different thermal conductivity models for nanofluids and NePCMs, with a focus on single-phase techniques due to the common assumption that NePCMs are stable, homogeneous mixtures. Certain physical occurrences have been neglected in previous experiments and investigations, according to the discussion. Given the high uncertainties in existing prediction models, the chapter closes by identifying a critical need for the creation of new analytical models for NePCMs. This disparity between simulation and experimental results necessitates additional experimental investigations using a variety of characterization methods, with a focus on nanoparticle propagation and the effect of NePCM's thermophysical properties across solid, mushy, and liquid states.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zhang P, Xiao X, Ma ZW (2016) A review of the composite phase change materials: fabrication, characterization, mathematical modeling and application to performance enhancement. Appl Energy 165:472–510. https://doi.org/10.1016/j.apenergy.2015.12.043

    Article  Google Scholar 

  2. Amidu MA, Ali M, Alkaabi AK, Addad Y (2022) A critical assessment of nanoparticles enhanced phase change materials (NePCMs) for latent heat energy storage applications. SSRN Electron J 0123456789:1–13. https://doi.org/10.2139/ssrn.4088368

    Article  Google Scholar 

  3. Xiong T, Zheng L, Shah KW (2020) Nano-enhanced phase change materials (NePCMs): a review of numerical simulations. Appl Therm Eng 178(May):115492. https://doi.org/10.1016/j.applthermaleng.2020.115492

  4. Bouzennada T et al (2023) Numerical simulation of heat transfer and melting process in a NEPCM: using new fin shape. Int Commun Heat Mass Transf 143(March):106711. https://doi.org/10.1016/j.icheatmasstransfer.2023.106711

  5. Soni V, Kumar A, Jain VK (2018) Performance evaluation of nano-enhanced phase change materials during discharge stage in waste heat recovery. Renew Energy 127:587–601. https://doi.org/10.1016/j.renene.2018.05.009

    Article  Google Scholar 

  6. Gong L, Wang Y, Cheng X, Zhang R, Zhang H (2014) A novel effective medium theory for modelling the thermal conductivity of porous materials. Int J Heat Mass Transf 68:295–298. https://doi.org/10.1016/j.ijheatmasstransfer.2013.09.043

    Article  Google Scholar 

  7. Dutil Y, Rousse DR, Ben Salah N, Lassue S, Zalewski L (2011) A review on phase-change materials: mathematical modeling and simulations. Renew Sustain Energy Rev 15(1):112–130. https://doi.org/10.1016/j.rser.2010.06.011

  8. Snarskii AA, Shamonin M, Yuskevich P (2020) Effective medium theory for the elastic properties of composite materials with various percolation thresholds. Materials (Basel) 13(5). https://doi.org/10.3390/ma13051243

  9. Samykano M (2022) Role of phase change materials in thermal energy storage: potential, recent progress and technical challenges. Sustain Energy Technol Assess 52(PC):102234. https://doi.org/10.1016/j.seta.2022.102234

  10. Kumar RR (2022) Experimental investigations on thermal properties of copper (II) oxide nanoparticles enhanced inorganic phase change materials for solar thermal energy storage applications

    Google Scholar 

  11. Kumar R et al (2022) Investigation of thermal performance and chemical stability of graphene enhanced phase change material for thermal energy storage. Phys Chem Earth 128(September):103250. https://doi.org/10.1016/j.pce.2022.103250

  12. Kumar R, Samykano M, Pandey AK, Kadirgama K, Tyagi VV (2022) A comparative study on thermophysical properties of functionalized and non-functionalized multi-walled carbon nano tubes (MWCNTs) enhanced salt hydrate phase change material. Sol Energy Mater Sol Cells 240(March):111697. https://doi.org/10.1016/j.solmat.2022.111697

  13. Laghari IA, Samykano M, Pandey AK, Said Z, Kadirgma K, Tyagi VV (2022) Thermal conductivity and thermal properties enhancement of paraffin/titanium oxide based nano enhanced phase change materials for energy storage. In: 2022 Advances in science and engineering technology international conferences (ASET 2022). https://doi.org/10.1109/ASET53988.2022.9735037

  14. Pandey AK, George M, Rahim NA, Tyagi VV, Shahabuddin S, Saidur R (2020) Preparation, characterization and thermophysical properties investigation of A70/polyaniline nanocomposite phase change material for medium temperature solar applications. Energy Built Environ (September):1–7. https://doi.org/10.1016/j.enbenv.2020.09.001

  15. George M, Pandey AK, Abd Rahim N, Tyagi VV, Shahabuddin S, Saidur R (2020) A novel polyaniline (PANI)/paraffin wax nano composite phase change material: superior transition heat storage capacity, thermal conductivity and thermal reliability. Sol Energy 204(April):448–458. https://doi.org/10.1016/j.solener.2020.04.087

  16. Reji Kumar R, Samykano M, Pandey AK, Kadirgama K, Tyagi VV (2020) Phase change materials and nano-enhanced phase change materials for thermal energy storage in photovoltaic thermal systems: a futuristic approach and its technical challenges. Renew Sustain Energy Rev 133(September):110341. https://doi.org/10.1016/j.rser.2020.110341

  17. Manoj Kumar P et al (2021) Investigating a single slope solar still with a nano-phase change material. Mater Today Proc 45:7922–7925. https://doi.org/10.1016/j.matpr.2020.12.804

  18. Lawag RA, Ali HM (2022) Phase change materials for thermal management and energy storage: a review. J Energy Storage 55(PC):105602. https://doi.org/10.1016/j.est.2022.105602

  19. Islam MM, Hasanuzzaman M, Rahim NA, Pandey AK, Rawa M, Kumar L (2021) Real time experimental performance investigation of a NePCM based photovoltaic thermal system: an energetic and exergetic approach. Renew Energy 172:71–87. https://doi.org/10.1016/j.renene.2021.02.169

    Article  Google Scholar 

  20. Fan Y, Bao Y, Ling C, Chu Y, Tan X, Yang S (2018) Experimental study on the thermal management performance of air cooling for high energy density cylindrical lithium-ion batteries. Appl Therm Eng 155(December 2018):96–109. https://doi.org/10.1016/j.applthermaleng.2019.03.157

  21. Kumar R et al (2022) Effect of surfactant on functionalized multi-walled carbon nano tubes enhanced salt hydrate phase change material. J Energy Storage 55(PC):105654. https://doi.org/10.1016/j.est.2022.105654

  22. Fayaz H, Rahim NA, Hasanuzzaman M, Rivai A, Nasrin R (2019) Numerical and outdoor real time experimental investigation of performance of PCM based PVT system. Sol Energy 179(July 2018):135–150. https://doi.org/10.1016/j.solener.2018.12.057

  23. Kalidasan B et al (2021) Synthesis and characterization of conducting polyaniline@cobalt-paraffin wax nanocomposite as nano-phase change material: Enhanced thermophysical properties. Renew Energy 173:1057–1069. https://doi.org/10.1016/j.renene.2021.04.050

  24. Baskar I, Chellapandian M, Jeyasubramanian K (2022) LA-PA eutectic/nano-SiO2 composite phase change material for thermal energy storage application in buildings. Constr Build Mater 338:127663. https://doi.org/10.1016/j.conbuildmat.2022.127663

    Article  Google Scholar 

  25. Pathak SK, Tyagi VV, Chopra K, Rejikumar R, Pandey AK (2023) Integration of emerging PCMs and nano-enhanced PCMs with different solar water heating systems for sustainable energy future: a systematic review. Sol Energy Mater Sol Cells 254(March):112237. https://doi.org/10.1016/j.solmat.2023.112237

  26. Al-Waeli AHA, Chaichan MT, Kazem HA, Sopian K (2017) Comparative study to use nano-(Al2O3, CuO, and SiC) with water to enhance photovoltaic thermal PV/T collectors. Energy Convers Manag 148:963–973. https://doi.org/10.1016/j.enconman.2017.06.072

    Article  Google Scholar 

  27. Laghari IA, Samykano M, Pandey AK, Kadirgama K, Mishra YN (2022) Binary composite (TiO2-Gr) based nano-enhanced organic phase change material: effect on thermophysical properties. J Energy Storage 51(5):104526. https://doi.org/10.1016/j.est.2022.104526

    Article  Google Scholar 

  28. Tian H, Wang W, Ding J, Wei X, Huang C (2016) Preparation of binary eutectic chloride/expanded graphite as high-temperature thermal energy storage materials. Sol Energy Mater Sol Cells 149:187–194. https://doi.org/10.1016/j.solmat.2015.12.038

    Article  Google Scholar 

  29. Sharma A, Tyagi VV, Chen CR, Buddhi D (2009) Review on thermal energy storage with phase change materials and applications. Renew Sustain Energy Rev 13(2):318–345. https://doi.org/10.1016/j.rser.2007.10.005

    Article  Google Scholar 

  30. Laghari IA, Samykano M, Pandey AK, Kadirgama K, Tyagi VV (2020) Advancements in PV-thermal systems with and without phase change materials as a sustainable energy solution: energy, exergy and exergoeconomic (3E) analytic approach. Sustain Energy Fuels 4(10):4956–4987. https://doi.org/10.1039/d0se00681e

    Article  Google Scholar 

  31. George M, Pandey AK, Rahim NA, Tyagi VV, Shahabuddin S, Saidur R (2020) Long-term thermophysical behavior of paraffin wax and paraffin wax/polyaniline (PANI) composite phase change materials. J Energy Storage 31(May):101568. https://doi.org/10.1016/j.est.2020.101568

  32. Pandey AK et al (2021) Energy, exergy, exergoeconomic and enviroeconomic (4-E) assessment of solar water heater with/without phase change material for building and other applications: a comprehensive review. Sustain Energy Technol Assess 45(March):101139. https://doi.org/10.1016/j.seta.2021.101139

  33. Rocha TTM, Trevizoli PV, de Oliveira RN (2023) A timeline of the phase-change problem for latent thermal energy storage systems: a review of theoretical approaches from the 1970s to 2022. Sol Energy 250(October 2022):248–284. https://doi.org/10.1016/j.solener.2022.12.035

  34. Abu-Hamdeh NH, Golmohammadzadeh A, Karimipour A (2021) Performing regression-based methods on viscosity of nano-enhanced PCM—using ANN and RSM. J Mater Res Technol 10:1184–1194. https://doi.org/10.1016/j.jmrt.2020.12.040

    Article  Google Scholar 

  35. Talebizadeh Sardari P, Walker GS, Gillott M, Grant D, Giddings D (2022) Numerical modelling of phase change material melting process embedded in porous media: effect of heat storage size. Proc Inst Mech Eng Part A J Power Energy 234(3):365–383. https://doi.org/10.1177/0957650919862974

  36. Ghalambaz M, Doostani A, Chamkha AJ, Ismael MA (2017) Melting of nanoparticles-enhanced phase-change materials in an enclosure: effect of hybrid nanoparticles. Int J Mech Sci 134:85–97. https://doi.org/10.1016/j.ijmecsci.2017.09.045

    Article  Google Scholar 

  37. Brinkman HC (1952) The viscosity of concentrated suspensions and solutions. J Chem Phys 20(4):571. https://doi.org/10.1063/1.1700493

    Article  ADS  Google Scholar 

  38. Corcione M (2011) Empirical correlating equations for predicting the effective thermal conductivity and dynamic viscosity of nanofluids. Energy Convers Manag 52(1):789–793. https://doi.org/10.1016/j.enconman.2010.06.072

    Article  Google Scholar 

  39. Wang H, Rao Z, Wang W, Liao S (2021) A reconstruction of Hamilton-Crosser model for effective thermal conductivity of nanofluids based on particle clustering and nanolayer formation. Case Stud Therm Eng 26(February). https://doi.org/10.1016/j.csite.2021.101051

  40. Santamaría-Holek I, Mendoza CI (2010) The rheology of concentrated suspensions of arbitrarily-shaped particles. J Colloid Interface Sci 346(1):118–126. https://doi.org/10.1016/j.jcis.2010.02.033

    Article  ADS  Google Scholar 

  41. Murshed SMS, Leong KC, Yang C (2008) Thermophysical and electrokinetic properties of nanofluids—a critical review. Appl Therm Eng 28(17–18):2109–2125. https://doi.org/10.1016/j.applthermaleng.2008.01.005

    Article  Google Scholar 

  42. Chen H, Ding Y, Tan C (2007) Rheological behaviour of nanofluids. New J Phys 9. https://doi.org/10.1088/1367-2630/9/10/367

  43. Vajjha RS (2009) Measurements of thermophysical properties of nanofluids and computation of heat transfer characteristics. LAP LAMBERT Academic Publishing. ISBN: 978-3838372143

    Google Scholar 

  44. Sahoo BC, Vajjha RS, Ganguli R, Chukwu GA, Das DK (2009) Determination of rheological behavior of aluminum oxide nanofluid and development of new viscosity correlations. Pet Sci Technol 27(15):1757–1770. https://doi.org/10.1080/10916460802640241

    Article  Google Scholar 

  45. Namburu PK, Kulkarni DP, Misra D, Das DK (2007) Viscosity of copper oxide nanoparticles dispersed in ethylene glycol and water mixture. Exp Therm Fluid Sci 32(2):397–402. https://doi.org/10.1016/j.expthermflusci.2007.05.001

    Article  Google Scholar 

  46. Mousavi S, Siavashi M, Heyhat MM (2019) Numerical melting performance analysis of a cylindrical thermal energy storage unit using nano-enhanced PCM and multiple horizontal fins. Numer Heat Transf Part A Appl 75:560–577. https://doi.org/10.1080/10407782.2019.1606634

  47. Zhou J, Hu M, Jing D (2019) The synergistic effect between surfactant and nanoparticle on the viscosity of water-based fluids. Chem Phys Lett 727(April):1–5. https://doi.org/10.1016/j.cplett.2019.04.052

    Article  ADS  Google Scholar 

  48. Nithiyanantham U, González-Fernández L, Grosu Y, Zaki A, Igartua JM, Faik A (2020) Shape effect of Al2O3 nanoparticles on the thermophysical properties and viscosity of molten salt nanofluids for TES application at CSP plants. Appl Therm Eng 169:114942. https://doi.org/10.1016/j.applthermaleng.2020.114942

    Article  Google Scholar 

  49. Wang F, Han L, Zhang Z, Fang X, Shi J, Ma W (2012) Surfactant-free ionic liquid-based nanofluids with remarkable thermal conductivity enhancement at very low loading of graphene. Nanoscale Res Lett 7:1–7. https://doi.org/10.1186/1556-276X-7-314

    Article  Google Scholar 

  50. Liu J, Wang F, Zhang L, Fang X, Zhang Z (2014) Thermodynamic properties and thermal stability of ionic liquid-based nanofluids containing graphene as advanced heat transfer fluids for medium-to-high-temperature applications. Renew Energy 63:519–523. https://doi.org/10.1016/j.renene.2013.10.002

    Article  Google Scholar 

  51. Krieger IM, Dougherty TJ (1959) A mechanism for non-Newtonian flow in suspensions of rigid spheres. Trans Soc Rheol 3(1):137–152. https://doi.org/10.1122/1.548848

    Article  MATH  Google Scholar 

  52. Hamilton RL (1962) Thermal conductivity of heterogeneous two-component systems. Ind Eng Chem Fundam 1(3):187–191. https://doi.org/10.1021/i160003a005

    Article  Google Scholar 

  53. Koo J, Kleinstreuer C (2004) A new thermal conductivity model for nanofluids. J Nanopart Res 6(6):577–588. https://doi.org/10.1007/s11051-004-3170-5

    Article  Google Scholar 

  54. Elbahjaoui R, El Qarnia H (2017) Transient behavior analysis of the melting of nanoparticle-enhanced phase change material inside a rectangular latent heat storage unit. Appl Therm Eng 112:720–738. https://doi.org/10.1016/j.applthermaleng.2016.10.115

    Article  Google Scholar 

  55. El Hasadi YMF, Khodadadi JM (2013) Numerical simulation of the effect of the size of suspensions on the solidification process of nanoparticle-enhanced phase change materials. J Heat Transfer 135(5):1–11. https://doi.org/10.1115/1.4023542

    Article  Google Scholar 

  56. Jayachandra Babu M, Sandeep N, Saleem S (2017) Free convective MHD Cattaneo-Christov flow over three different geometries with thermophoresis and Brownian motion. Alexandria Eng J 56(4):659–669. https://doi.org/10.1016/j.aej.2017.01.005

  57. Khanafer K, Vafai K, Lightstone M (2003) Buoyancy-driven heat transfer enhancement in a two-dimensional enclosure utilizing nanofluids. Int J Heat Mass Transf 46(19):3639–3653. https://doi.org/10.1016/S0017-9310(03)00156-X

    Article  MATH  Google Scholar 

  58. Vajjha RS, Das DK (2009) Experimental determination of thermal conductivity of three nanofluids and development of new correlations. Int J Heat Mass Transf 52(21–22):4675–4682. https://doi.org/10.1016/j.ijheatmasstransfer.2009.06.027

    Article  MATH  Google Scholar 

  59. Nan CW, Birringer R, Clarke DR, Gleiter H (1997) Effective thermal conductivity of particulate composites with interfacial thermal resistance. J Appl Phys 81(10):6692–6699. https://doi.org/10.1063/1.365209

    Article  ADS  Google Scholar 

  60. Fan L et al (2015) Increased thermal conductivity of eicosane- based composite phase change materials in the presence of graphene ... increased thermal conductivity of eicosane-based composite phase change materials in the presence of graphene nanoplatelets. (June 2013). https://doi.org/10.1021/ef400702a

  61. Harish S, Orejon D, Takata Y, Kohno M (2015) Thermal conductivity enhancement of lauric acid phase change nanocomposite with graphene nanoplatelets. Appl Therm Eng 80:205–211. https://doi.org/10.1016/j.applthermaleng.2015.01.056

    Article  Google Scholar 

  62. Xu Z, Kleinstreuer C (2014) Concentration photovoltaic-thermal energy co-generation system using nanofluids for cooling and heating. Energy Convers Manag 87:504–512. https://doi.org/10.1016/j.enconman.2014.07.047

    Article  Google Scholar 

  63. Lachheb M, Karkri M, Albouchi F, Mzali F, Ben Nasrallah S (2014) Thermophysical properties estimation of paraffin/graphite composite phase change material using an inverse method. Energy Convers Manag 82:229–237. https://doi.org/10.1016/j.enconman.2014.03.021

  64. Progelhof RC (1976) Methods for predicting the thermal conductivity of composite systems: a review. 76(9)

    Google Scholar 

  65. O’Connor WE, Warzoha R, Weigand R, Fleischer AS, Wemhoff AP (2014) Thermal property prediction and measurement of organic phase change materials in the liquid phase near the melting point. Appl Energy 132:496–506. https://doi.org/10.1016/j.apenergy.2014.07.045

    Article  Google Scholar 

  66. Madruga S, Mendoza C (2021) Heat transfer performance and thermal energy storage in nano-enhanced phase change materials driven by thermocapillarity. Int Commun Heat Mass Transf 129(November):105672. https://doi.org/10.1016/j.icheatmasstransfer.2021.105672

  67. Bechiri M, Mansouri K (2016) Analytical study of heat generation effects on melting and solidification of nano-enhanced PCM inside a horizontal cylindrical enclosure. Appl Therm Eng 104:779–790. https://doi.org/10.1016/j.applthermaleng.2016.05.105

    Article  Google Scholar 

  68. Hamali W, Almusawa MY (2022) Case studies in thermal engineering transient heat transfer of NEPCM during solidification using Galerkin method. Case Stud Therm Eng 35(February):102114. https://doi.org/10.1016/j.csite.2022.102114

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reji Kumar Rajamony .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

George, M., Rajamony, R.K. (2023). Theoretical Analysis and Correlations for Predicting Properties and Evaluation Methods for NePCMs. In: Said, Z., Pandey, A.K. (eds) Nano Enhanced Phase Change Materials. Materials Horizons: From Nature to Nanomaterials. Springer, Singapore. https://doi.org/10.1007/978-981-99-5475-9_6

Download citation

Publish with us

Policies and ethics