Skip to main content

Nanostructure–based Colloidal Suspension for Thermal Enhancement for NEPCM

  • Chapter
  • First Online:
Nano Enhanced Phase Change Materials

Abstract

This chapter provides an in-depth look at nano-enhanced phase change materials (NEPCMs), focusing on their preparation methods, classification based on nanostructures, and applications in various sectors. NEPCMs have emerged as a possible option to alleviate poor thermal conductivity restrictions by adding nanoscale elements such as nanoparticles, nanotubes, and nanofibers into standard phase change materials (PCMs). The chapter looks into the ideal qualities, thermo-physical properties, and preparation methods of NEPCMs, highlighting the significance of optimal PCM and nanostructure selection for improved performance and stability. It also looks at the different uses of NEPCMs, particularly in thermal management and energy storage systems, focusing on solar energy devices. The chapter also provides a complete classification of nanostructure-based improved PCMs, including colloidal suspensions based on nanoparticles, nanotubes, and nanofibers. Finally, the concentration, type, and shape of nanomaterials, as well as the addition of surfactants for stabilization and homogeneous dispersion, have a significant influence on the thermal conductivity, density, and viscosity properties of NEPCMs, paving the way for the development of advanced thermal management and vitality capacity frameworks for a more feasible future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Calvin K, Wise M, Luckow P, Kyle P, Clarke L, Edmonds J (2016) Implications of uncertain future fossil energy resources on bioenergy use and terrestrial carbon emissions. Clim Change 136(1):57e68. https://doi.org/10.1007/s10584e013e0923e0

  2. Chu S, Cui Y, Liu N (2017) The path towards sustainable energy. Nat Mater 16(1):16e22. https://doi.org/10.1038/NMAT4834

  3. Koroneos C, Spachos T, Moussiopoulos N (2003) Exergy analysis of renewable energy sources. Renew Energy 28(2):295e310. https://doi.org/10.1016/S0960e1481(01)00125e2

  4. Wei G, Wang G, Xu C, Ju X, Xing L, Du X, Yang Y (2018) Selection principles and thermophysical properties of high temperature phase change materials for thermal energy storage: a review. Renew Sust Energ. Rev 81 (Part 2):1771–1786

    Google Scholar 

  5. Alva G, Lin Y, Fang G (2018) An overview of thermal energy storage systems. Energy 144:341–378

    Google Scholar 

  6. Leong KY, Rahman M R A, Gurunathan BA (2019) Nano-enhanced phase change materials: a review of thermo-physical properties, applications and challenges. J Energy Storage 21:18–31

    Google Scholar 

  7. Harikrishnan S, Imran Hussain S, Devaraju A, Sivasamy P, Kalaiselvam S (2017) Improved performance of a newly prepared nano-enhanced phase change material for solar energy storage. J Mech Sci Technol 31(10):4903–4910

    Google Scholar 

  8. Zhang Z, Shi G, Wang S, Fang X, Liu X (2013) Thermal energy storage cement mortar containing neoctadecane/expanded graphite composite phase change material. Renew Energy 50:670e675. https://doi.org/10.1016/j.renene.2012.08.024

  9. Wu W, Bostanci H, Chow LC, Hong Y, Wang CM, Su M, Kizito JP (2013) Heat transfer enhancement of PAO in microchannel heat exchanger using nanoeencapsulated phase change indium particles. Int J Heat Mass Transf 58(1e2):348e355. https://doi.org/10.1016/j.ijheatmasstransfer.2012.11.032

  10. Han P, Zheng X, Hou W, Qiu W, Tang D (2015) Study on heatestorage and release characteristics of multiecavityestructured phaseechange microcapsules. Phase Transit 88(7):704e715. https://doi.org/10.1080/01411594.2015.1014482

  11. Sobolčiak P, Abdelrazeq H, Özerkan NG, Ouederni M, Nógellová Z, AlMaadeed MA, Karkri M, Krupa I (2016) Heat transfer performance of paraffin wax based phase change materials applicable in building industry. Appl Therm Eng 107:1313–1323

    Google Scholar 

  12. Peippo K, Kauranen P, Lund PD (1991) A multicomponent PCM wall optimized for passive solar heating. Energy Build 17(4):259–270

    Article  Google Scholar 

  13. Lin SC, Al-Kayiem HH (2016) Evaluation of copper nanoparticles—Paraffin wax compositions for solar thermal energy storage. Solar Energy 132(5802):267–278. https://doi.org/10.1016/j.solener.2016.03.004

  14. Rathod MK (2018) Thermal stability of phase change material. https://doi.org/10.5772/intechopen.75923

  15. Choi SUS (1998) Nanofluid technology: current status and future research. https://www.osti.gov/servlets/purl/11048. Accessed 3 March 2018

  16. Zeng JL, Cao Z, Yang DW, Xu F, Sun LX, Zhang XF, Zhang L (2009) Effects of MWNTs on phase change enthalpy and thermal conductivity of a solid-liquid organic PCM. J Therm Anal Calorim 95(2):507–512

    Article  Google Scholar 

  17. Zhou M, Xia G, Li J, Chai L, Zhou L (2012) Analysis of factors influencing thermal conductivity and viscosity in different kinds of surfactant solutions. Exp Therm Fluid Sci 36:22–29

    Article  Google Scholar 

  18. Mohamed NH, Soliman FS, El Maghraby H, Moustfa YM (2017) Thermal conductivity enhancement of treated petroleum waxes, as phase change material, by α nano alumina: energy storage. Renew Sust Energ Rev 70:1052–1058

    Article  Google Scholar 

  19. Maheshwary PB, Handa CC, Nemade KR (2017) A comprehensive study of effect of concentration, particle size and particle shape on thermal conductivity of titania/water based nanofluid. Appl Therm Eng 119:79–88

    Article  Google Scholar 

  20. Sami S, Etesami N, Improving thermal characteristics and stability of phase change material containing TiO2 nanoparticles after thermal cycles for energy storage

    Google Scholar 

  21. Kibria MA, Anisur MR, Mahfuz MH, Saidur R, Metselaar IHSC (2015) A review on thermophysical properties of nanoparticle dispersed phase change materials. Energy Conv Manag 95:69–89

    Article  Google Scholar 

  22. Xu H, Sze JY, Romagnoli A, Py X (2017) Selection of phase change material for thermal energy storage in solar air conditioning systems. Energy Procedia 105:4281–4288

    Article  Google Scholar 

  23. Bahiraei F, Fartaj A, Nazri G-A (2017) Experimental and numerical investigation on the performance of carbon-based nanoenhanced phase change materials for thermal management applications. Energy Conv Manag 153:115–128

    Article  Google Scholar 

  24. Venkitaraj KP, Suresh S, Praveen B, Venugopal A, Nair SC (2017) Pentaerythritol with alumina nano additives for thermal energy storage applications. J Energy Storage 13:359–377

    Article  Google Scholar 

  25. Sharma S, Micheli L, Chang W, Tahir AA, Reddy KS, Mallick TK (2017) Nano-enhanced phase change material for thermal management of BICPV. Appl Energy 208:719–733

    Google Scholar 

  26. Tariq SL, Ali HM, Akram M A, Janjua MM, Ahmadlouydarab M (2020) Nanoparticles enhanced phase change materials (NePCMs)—a recent review. Appl Thermal Eng 176:115305

    Google Scholar 

  27. Ali H, Babar H, Shah T, Sajid M, Qasim M, Javed S (2018) Preparation techniques of TiO2 nanofluids and challenges: a review. Appl Sci 8(4):587

    Article  Google Scholar 

  28. Teng T-P, Yu C-C (2012) Characteristics of phase-change materials containing oxide nano-additives for thermal storage. Nanoscale Res Lett 7(1):611

    Article  ADS  MathSciNet  Google Scholar 

  29. Mohamed NH, Soliman FS, El Maghraby H, Moustfa YM (2017) Thermal conductivity enhancement of treated petroleum waxes, as phase change material, by α nano alumina: energy storage. Renew Sustain Energy Rev 70:1052–1058

    Article  Google Scholar 

  30. Sayyar M, Weerasiri RR, Soroushian P, Lu J (2014) Experimental and numerical study of shape-stable phase-change nanocomposite toward energy-efficient building constructions. Energy Build. 75:249–255

    Article  Google Scholar 

  31. Ramakrishnan S, Wang X, Sanjayan J, Wilson J (2017) Heat transfer performance enhancement of paraffin/expanded perlite phase change composites with graphene nano-platelets. Energy Procedia 105:4866–4871

    Article  Google Scholar 

  32. Harikrishnan S, Deenadhayalan M, Kalaiselvam S (2014) Experimental investigation of solidification and melting characteristics of composite PCMs for building heating application. Energy Convers Manag 86:864–872

    Article  Google Scholar 

  33. Wang J, Xie H, Xin Z, Li Y, Chen L (2020) Enhancing thermal conductivity of palmitic acid based phase change materials with carbon nanotubes as fillers. Sol Energy 84(2):339–344

    Google Scholar 

  34. Kant K, Anand A, Shukla A, Sharma A (2020) Heat transfer study of building integrated photovoltaic (BIPV) with nano-enhanced phase change materials. J Energy Storage 30:101563

    Article  Google Scholar 

  35. Nada SA, El-Nagar DH, Hussein HMS (2018) Improving the thermal regulation and efficiency enhancement of PCM-Integrated PV modules using nano particles. Energy Convers Manag 166:735–743

    Article  Google Scholar 

  36. Al-Waeli AHA, Sopian K, Chaichan MT, Kazem HA, Ibrahim A, Mat S, Ruslan MH (2017) Evaluation of the nanofluid and nano-PCM based photovoltaic thermal (PVT) system: an experimental study. Energy Convers Manag 151:693–708

    Google Scholar 

  37. Jilte R, Afzal A, Panchal S (2021) A novel battery thermal management system using nano-enhanced phase change materials. Energy 219:119564

    Article  Google Scholar 

  38. Harikrishnan S, Hussain SI, Devaraju A, Sivasamy P, Kalaiselvam S (2017) Improved performance of a newly prepared nano-enhanced phase change material for solar energy storage. J Mech Sci Technol 31:4903–4910

    Article  Google Scholar 

  39. Xiong Q, Tlili I, Dara RN, Shafee A, Nguyen-Thoi T, Rebey A, Haq R-U, Li Z (2020) Energy storage simulation involving nePCM solidification in appearance of fins. Phys A Stat Mech Its Appl 544:123566

    Article  MathSciNet  MATH  Google Scholar 

  40. Punniakodi BMS, Senthil R (2022) Recent developments in nano-enhanced phase change materials for solar thermal storage. Sol Energy Mater Sol Cells 238:111629. https://doi.org/10.1016/j.solmat.2022.111629]

    Article  Google Scholar 

  41. Qiu L, Ouyang Y, Feng Y, Zhang X (2019) Review on micro/nano phase change materials for solar thermal applications. Renewable Energy 140:513–538. https://doi.org/10.1016/j.renene.2019.03.088

  42. Amudhalapalli GK, Devanuri JK (2021) Synthesis, characterization, thermophysical properties, stability and applications of nanoparticle enhanced phase change materials—a comprehensive review. Therm Sci Eng Prog. https://doi.org/10.1016/j.tsep.2021.101049]

    Article  Google Scholar 

  43. Kong J, Franklin NR, Zhou C, Chapline MG, Peng S, Cho K, Dai H (2000) Nanotube molecular wires as chemical sensors. Science 287:622–625

    Article  ADS  Google Scholar 

  44. Ghosh S, Sood AK, Kumar N (2003) Carbon nanotube flow sensors. Science 299:1042–1044

    Article  ADS  Google Scholar 

  45. Deriabina O, Lebovka N, Bulavin L, Goncharuk A (2014) Regulation of dispersion of carbon nanotubes in binary water+1-Cyclohexyl-2-pyrrolidone mixtures. Phys E 59:150–157

    Article  Google Scholar 

  46. Chopra NG, Luyken RJ, Cherrey K, Crespi VH, Cohen ML, Louie SG, Zettl A (1995) Boron nitride nanotubes. Science 269(5226):966–967

    Article  ADS  Google Scholar 

  47. Scrivens WA, Tour JM, Creek KF, Pirisi L (1994) J Am Chem Soc 116:4517

    Article  Google Scholar 

  48. Sano M, Kamino A, Okamura J, Shinkai S (2001) Science 293:1299

    Article  ADS  Google Scholar 

  49. Paineau E, Monet G, Peyre V, Goldmann C, Rouzière S, Launoisa P, Colloidal stability of imogolite nanotubes dispersions: a phase diagram study. In: PHENIX, UMR CNRS 8234, Sorbonne Universités, UPMC University Paris 06, 75005 Paris, France

    Google Scholar 

  50. Xu J, Chatterjee S, Koelling KW, Wang Y, Bechtel SE (2005) Shear and extensional rheology of carbon nanofiber suspensions. Rheol Acta 44(6):537–562. https://doi.org/10.1007/s00397-005-0436-5

    Article  Google Scholar 

  51. Cai Y, Sun G, Liu M, Zhang JZ, Wang Q, Wei Q (2015) Fabrication and characterization of capric–lauric–palmitic acid/electrospun SiO2 nanofibers composite as form-stable phase change material for thermal energy storage/retrieval. Sol Energy 118:87–95. https://doi.org/10.1016/j.solener.2015.04.042.)

    Article  ADS  Google Scholar 

  52. Fukai J, Kanou M, Kodama Y, Miyatake O (2000) Thermal conductivity enhancement of energy storage media using carbon fibers. Energy Convers Manag 41(14):1543–1556. https://doi.org/10.1016/s0196-8904(99)00166-1

    Article  Google Scholar 

  53. Elgafy A, Lafdi K (2005) Effect of carbon nanofiber additives on thermal behavior of phase change materials. Carbon 43(15):3067–3074. https://doi.org/10.1016/j.carbon.2005.06.042

    Article  Google Scholar 

  54. Cui Y, Wang L, Hu S, Yu X (2011) The experimental exploration of carbon nanofiber and carbon nanotube additives on thermal behavior of phase change materials. Sol Energy Mater Sol Cells 95(4):1208–1212. https://doi.org/10.1016/j.solmat.2011.01.021

    Article  Google Scholar 

  55. Sanusi O, Warzoha RJ, Fleischer AS (2011) Energy storage and solidification of paraffin phase change material embedded with graphite nanofibers. Int J Heat Mass Transf 54(19–20):4429–4436. https://doi.org/10.1016/j.ijheatmasstransfer.2011.04.046

    Article  Google Scholar 

  56. Warzoha RJ, Weigand R, Fleischer AS (2015) Temperature-dependent thermal properties of a paraffin phase change material embedded with herringbone style graphite nanofibers. Appl Energy 137:716–725. https://doi.org/10.1016/j.apenergy.2014.03.091

    Article  Google Scholar 

  57. Khodadadi JM, Fan L, Babaei H (2013) Thermal conductivity enhancement of nanostructure-based colloidal suspensions utilized as phase change materials for thermal energy storage: a review. Renew Sustain Energy Rev 24:418–444. https://doi.org/10.1016/j.rser.2013.03.031

    Article  Google Scholar 

  58. Scruggs AM, Kirmse S, Hsiao K (2016) Influence of Z-aligned carbon nanofibers on the through-thickness thermal conductivity of paraffin wax. In: ASME 2016 international mechanical engineering congress and exposition. https://doi.org/10.1115/imece2016-67795

  59. Zhang Q, Luo Z, Guo Q, Wu G (2017) Preparation and thermal properties of short carbon fibers/erythritol phase change materials. Energy Convers Manag 136:220–228. https://doi.org/10.1016/j.enconman.2017.01.023)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT, NRF-2022R1A4A1032832).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ravindra N. Bulakhe .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kahandal, S.S. et al. (2023). Nanostructure–based Colloidal Suspension for Thermal Enhancement for NEPCM. In: Said, Z., Pandey, A.K. (eds) Nano Enhanced Phase Change Materials. Materials Horizons: From Nature to Nanomaterials. Springer, Singapore. https://doi.org/10.1007/978-981-99-5475-9_5

Download citation

Publish with us

Policies and ethics