Skip to main content

Influence of Nanoparticles on Thermophysical Properties of PCMs

  • Chapter
  • First Online:
Nano Enhanced Phase Change Materials

Abstract

Nanoparticles' effects on PCM thermophysical characteristics are examined in the book chapter. Nanoparticles in PCMs improve their thermophysical properties, making them popular in energy storage, thermal management, and construction materials. Energy storage and discharge improves. Nanoparticles' high volume-to-surface area ratio enhances interfacial heat transmission and thermal conductivity and diffusivity. The chapter explores how nanoparticles affect PCM crystallization, phase transition, and enthalpy. The level of improvement depends on nanoparticle type, concentration, size, and PCM dispersion and interaction. Despite this improvement, nanoparticle-PCM composites must be optimized for specific uses and tested for long-term stability. Nanoparticle-PCM composites offer promising thermophysical features for energy-intensive applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kumar A, Tiwari AK (2022) Solar-assisted post-combustion carbon-capturing system retrofitted with coal-fired power plant towards net-zero future: a review. J CO2 Util 65:102241. https://doi.org/10.1016/j.jcou.2022.102241

  2. Kumar A, Gupta PR, Tiwari AK, Said Z (2022) Performance evaluation of small scale solar organic Rankine cycle using MWCNT + R141b nanorefrigerant. Energy Convers Manag 260:115631. https://doi.org/10.1016/j.enconman.2022.115631

    Article  Google Scholar 

  3. Punniakodi BMS, Senthil R (2022) Recent developments in nano-enhanced phase change materials for solar thermal storage. Sol Energy Mater Sol Cells 238:111629. https://doi.org/10.1016/j.solmat.2022.111629

  4. Tiwari AK, Kumar A (2023) Tubular solar thermal system: recent development and its utilization. Nanotechnol Appl Sol Energy Syst (Wiley) 257–271. https://doi.org/10.1002/9781119791232.ch10

  5. Mourad A, Aissa A, Said Z, Younis O, Iqbal M, Alazzam A (2022) Recent advances on the applications of phase change materials for solar collectors, practical limitations, and challenges: a critical review. J Energy Storage 49:104186. https://doi.org/10.1016/j.est.2022.104186

  6. Mitra A, Kumar R, Singh DK, Said Z (2022) Advances in the improvement of thermal-conductivity of phase change material-based lithium-ion battery thermal management systems: an updated review. J Energy Storage 53:105195. https://doi.org/10.1016/j.est.2022.105195

  7. Hassan F, Jamil F, Hussain A, Ali HM, Janjua MM, Khushnood S et al (2022) Recent advancements in latent heat phase change materials and their applications for thermal energy storage and buildings: a state of the art review. Sustain Energy Technol Assess 49:101646. https://doi.org/10.1016/j.seta.2021.101646

  8. Hayat MA, Chen Y, Bevilacqua M, Li L, Yang Y (2022) Characteristics and potential applications of nano-enhanced phase change materials: a critical review on recent developments. Sustain Energy Technol Assess 50:101799. https://doi.org/10.1016/j.seta.2021.101799

    Article  Google Scholar 

  9. Velmurugan K, Kumarasamy S, Wongwuttanasatian T, Seithtanabutara V (2021) Review of PCM types and suggestions for an applicable cascaded PCM for passive PV module cooling under tropical climate conditions. J Clean Prod 293:126065. https://doi.org/10.1016/j.jclepro.2021.126065

    Article  Google Scholar 

  10. Hassan A, Laghari MS, Rashid Y (2016) Micro-encapsulated phase change materials: a review of encapsulation, safety and thermal characteristics. Sustainability 8. https://doi.org/10.3390/su8101046

  11. Shoeibi S, Kargarsharifabad H, Mirjalily SAA, Sadi M, Arabkoohsar A (2022) A comprehensive review of nano-enhanced phase change materials on solar energy applications. J Energy Storage 50:104262. https://doi.org/10.1016/j.est.2022.104262

    Article  Google Scholar 

  12. Kumar A, Tiwari AK, Said Z (2021) A comprehensive review analysis on advances of evacuated tube solar collector using nanofluids and PCM. Sustain Energy Technol Assess 47:101417. https://doi.org/10.1016/j.seta.2021.101417

    Article  Google Scholar 

  13. Sharma A, Tyagi V V, Chen CR, Buddhi D (2009) Review on thermal energy storage with phase change materials and applications. Renew Sustain Energy Rev 13:318–345. https://doi.org/10.1016/j.rser.2007.10.005

  14. Zhang Q, Liu J, Zhang J, Lin L, Shi J (2022) A review of composite phase change materials based on biomass materials. Polymers (Basel) 14. https://doi.org/10.3390/polym14194089

  15. Sharma S, Micheli L, Chang W, Tahir AA, Reddy KS, Mallick TK (2017) Nano-enhanced phase change material for thermal management of BICPV. Appl Energy 208:719–733. https://doi.org/10.1016/j.apenergy.2017.09.076

    Article  Google Scholar 

  16. Alazwari MA, Algarni M, Safaei MR (2022) Effects of various types of nanomaterials on PCM melting process in a thermal energy storage system for solar cooling application using CFD and MCMC methods. Int J Heat Mass Transf 195:123204. https://doi.org/10.1016/j.ijheatmasstransfer.2022.123204

  17. Yang L, Huang J, Zhou F (2020) Thermophysical properties and applications of nano-enhanced PCMs: an update review. Energy Convers Manag 214:112876. https://doi.org/10.1016/j.enconman.2020.112876

  18. Williams JD, Peterson GP (2021) A review of thermal property enhancements of low-temperature nano-enhanced phase change materials. Nanomaterials 11. https://doi.org/10.3390/nano11102578

  19. Ibrahem AM, El-Amin MF, Sun S (2017) Effects of nanoparticles on melting process with phase-change using the lattice Boltzmann method. Results Phys 7:1676–1682. https://doi.org/10.1016/j.rinp.2017.04.032

  20. Zhang J, Cao Z, Huang S, Huang X, Liang K, Yang Y et al (2022) Improving the melting performance of phase change materials using novel fins and nanoparticles in tubular energy storage systems. Appl Energy 322:119416. https://doi.org/10.1016/j.apenergy.2022.119416

    Article  Google Scholar 

  21. Ghalambaz M, Doostani A, Chamkha AJ, Ismael MA (2017) Melting of nanoparticles-enhanced phase-change materials in an enclosure: effect of hybrid nanoparticles. Int J Mech Sci 134:85–97. https://doi.org/10.1016/j.ijmecsci.2017.09.045

    Article  Google Scholar 

  22. Manoj Kumar P, Mylsamy K, Saravanakumar PT (2020) Experimental investigations on thermal properties of nano-SiO2/paraffin phase change material (PCM) for solar thermal energy storage applications. Energy Sources Part A Recover Util Environ Eff 42:2420–2433. https://doi.org/10.1080/15567036.2019.1607942

    Article  Google Scholar 

  23. Singh SK, Verma SK, Kumar R (2022) Thermal performance and behavior analysis of SiO2, Al2O3 and MgO based nano-enhanced phase-changing materials, latent heat thermal energy storage system. J Energy Storage 48:103977. https://doi.org/10.1016/j.est.2022.103977

    Article  Google Scholar 

  24. Liu L, Su D, Tang Y, Fang G (2016) Thermal conductivity enhancement of phase change materials for thermal energy storage: a review. Renew Sustain Energy Rev 62:305–317. https://doi.org/10.1016/j.rser.2016.04.057

    Article  Google Scholar 

  25. Paul J, Pandey AK, Mishra YN, Said Z, Mishra YK, Ma Z et al (2022) Nano-enhanced organic form stable PCMs for medium temperature solar thermal energy harvesting: recent progresses, challenges, and opportunities. Renew Sustain Energy Rev 161:112321. https://doi.org/10.1016/j.rser.2022.112321

    Article  Google Scholar 

  26. Leong KY, Abdul Rahman MR, Gurunathan BA (2019) Nano-enhanced phase change materials: a review of thermo-physical properties, applications and challenges. J Energy Storage 21:18–31. https://doi.org/10.1016/j.est.2018.11.008

    Article  Google Scholar 

  27. Li M, Guo Q, Nutt S (2017) Carbon nanotube/paraffin/montmorillonite composite phase change material for thermal energy storage. Sol Energy 146:1–7. https://doi.org/10.1016/j.solener.2017.02.003

    Article  ADS  Google Scholar 

  28. Fan L, Khodadadi JM (2012) An experimental investigation of enhanced thermal conductivity and expedited unidirectional freezing of cyclohexane-based nanoparticle suspensions utilized as nano-enhanced phase change materials (NePCM). Int J Therm Sci 62:120–126. https://doi.org/10.1016/j.ijthermalsci.2011.11.005

    Article  Google Scholar 

  29. Sharma RK, Ganesan P, Tyagi VV, Metselaar HSC, Sandaran SC (2016) Thermal properties and heat storage analysis of palmitic acid-TiO2 composite as nano-enhanced organic phase change material (NEOPCM). Appl Therm Eng 99:1254–1262. https://doi.org/10.1016/j.applthermaleng.2016.01.130

    Article  Google Scholar 

  30. Bayat M, Faridzadeh MR, Toghraie D (2018) Investigation of finned heat sink performance with nano enhanced phase change material (NePCM). Therm Sci Eng Prog 5:50–59. https://doi.org/10.1016/j.tsep.2017.10.021

    Article  Google Scholar 

  31. Sami S, Etesami N (2017) Improving thermal characteristics and stability of phase change material containing TiO2 nanoparticles after thermal cycles for energy storage. Appl Therm Eng 124:346–352. https://doi.org/10.1016/j.applthermaleng.2017.06.023

    Article  Google Scholar 

  32. Cui Y, Liu C, Hu S, Yu X (2011) The experimental exploration of carbon nanofiber and carbon nanotube additives on thermal behavior of phase change materials. Sol Energy Mater Sol Cells 95:1208–1212. https://doi.org/10.1016/j.solmat.2011.01.021

  33. Hashempour S, Vakili MH (2018) Preparation and characterisation of nano enhanced phase change material by adding carbon nano tubes to butyl stearate. J Exp Nanosci 13:188–198. https://doi.org/10.1080/17458080.2018.1502480

    Article  Google Scholar 

  34. Wang J, Xie H, Guo Z, Guan L, Li Y (2014) Improved thermal properties of paraffin wax by the addition of TiO2 nanoparticles. Appl Therm Eng 73:1541–1547. https://doi.org/10.1016/j.applthermaleng.2014.05.078

    Article  Google Scholar 

  35. Hailu G (2021) 8—Energy systems in buildings. In: Borge-Diez D, Rosales-Asensio E (eds) Energy services fundamentals and financing. Academic Press, pp 181–209. https://doi.org/10.1016/B978-0-12-820592-1.00008-7

  36. Ghosh D, Ghose J, Datta P, Kumari P, Paul S (2022) Strategies for phase change material application in latent heat thermal energy storage enhancement: status and prospect. J Energy Storage 53:105179. https://doi.org/10.1016/j.est.2022.105179

    Article  Google Scholar 

  37. Tofani K, Tiari S (2021) Nano-enhanced phase change materials in latent heat thermal energy storage systems: a review. Energies 14. https://doi.org/10.3390/en14133821

  38. Agrawal R, Singh KDP (2021) A review on productivity enhancement of solar still by application of PCM and nano enhanced PCM. AIP Conf Proc 2341. https://doi.org/10.1063/5.0050018

  39. Colla L, Fedele L, Mancin S, Danza L, Manca O (2017) Nano-PCMs for enhanced energy storage and passive cooling applications. Appl Therm Eng 110:584–589. https://doi.org/10.1016/j.applthermaleng.2016.03.161

    Article  Google Scholar 

  40. Babapoor A, Karimi G (2015) Thermal properties measurement and heat storage analysis of paraffin nanoparticles composites phase change material: comparison and optimization. Appl Therm Eng 90:945–951. https://doi.org/10.1016/j.applthermaleng.2015.07.083

    Article  Google Scholar 

  41. Shaikh S, Lafdi K, Hallinan K (2008) Carbon nanoadditives to enhance latent energy storage of phase change materials. J Appl Phys 103. https://doi.org/10.1063/1.2903538

  42. Wang J, Xie H, Xin Z (2009) Thermal properties of paraffin based composites containing multi-walled carbon nanotubes. Thermochim Acta 488:39–42. https://doi.org/10.1016/j.tca.2009.01.022

    Article  Google Scholar 

  43. Lin SC, Al-Kayiem HH (2016) Evaluation of copper nanoparticles—paraffin wax compositions for solar thermal energy storage. Sol Energy 132:267–278. https://doi.org/10.1016/j.solener.2016.03.004

    Article  ADS  Google Scholar 

  44. Sun X, Liu L, Mo Y, Li J, Li C (2020) Enhanced thermal energy storage of a paraffin-based phase change material (PCM) using nano carbons. Appl Therm Eng 181:115992. https://doi.org/10.1016/j.applthermaleng.2020.115992

    Article  Google Scholar 

  45. Shchukina EM, Graham M, Zheng Z, Shchukin DG (2018) Nanoencapsulation of phase change materials for advanced thermal energy storage systems. Chem Soc Rev 47:4156–4175. https://doi.org/10.1039/c8cs00099a

    Article  Google Scholar 

  46. Bahiraei F, Fartaj A, Nazri GA (2017) Experimental and numerical investigation on the performance of carbon-based nanoenhanced phase change materials for thermal management applications. Energy Convers Manag 153:115–128. https://doi.org/10.1016/j.enconman.2017.09.065

    Article  Google Scholar 

  47. Chen H, Li S, Wei P, Gong Y, Nie P, Chen X et al (2020) Experimental study on characteristics of a nano-enhanced phase change material slurry for low temperature solar energy collection. Sol Energy Mater Sol Cells 212:110513. https://doi.org/10.1016/j.solmat.2020.110513

    Article  Google Scholar 

  48. Águila VB, Vasco DA, Galvez PP, Zapata PA (2018) Effect of temperature and CuO-nanoparticle concentration on the thermal conductivity and viscosity of an organic phase-change material. Int J Heat Mass Transf 120:1009–1019. https://doi.org/10.1016/j.ijheatmasstransfer.2017.12.106

    Article  Google Scholar 

  49. Cherecheş M, Bejan D, Ibanescu C, Danu M, Cherecheş EI, Minea AA (2022) Viscosity and isobaric heat capacity of PEG 400-based phase change materials nano-enhanced with ZnO nanoparticles. J Therm Anal Calorim 147:8815–8826. https://doi.org/10.1007/s10973-021-11171-w

    Article  Google Scholar 

  50. Motahar S, Nikkam N, Alemrajabi AA, Khodabandeh R, Toprak MS, Muhammed M (2014) A novel phase change material containing mesoporous silica nanoparticles for thermal storage: a study on thermal conductivity and viscosity. Int Commun Heat Mass Transf 56:114–120. https://doi.org/10.1016/j.icheatmasstransfer.2014.06.005

    Article  Google Scholar 

  51. Kumaresan V, Velraj R, Das SK (2012) The effect of carbon nanotubes in enhancing the thermal transport properties of PCM during solidification. Heat Mass Transf/Wärme- und Stoffuebertragung 48:1345–1355. https://doi.org/10.1007/s00231-012-0980-3

    Article  ADS  Google Scholar 

  52. Tiwari AK, Kumar A, Said Z (2022) Chapter 3—Synthesis, characterization, and measurement techniques for the thermophysical properties of nanofluids. In: Ali HM (ed) Advances in nanofluid heat transfer. Elsevier, pp 59–93. https://doi.org/10.1016/B978-0-323-88656-7.00012-X

  53. Xu H, Sze JY, Romagnoli A, Py X (2017) Selection of phase change material for thermal energy storage in solar air conditioning systems. Energy Procedia 105:4281–4288. https://doi.org/10.1016/j.egypro.2017.03.898

    Article  Google Scholar 

  54. Mjallal I, Farhat H, Hammoud M, Ali S, Assi I (2018) Improving the cooling efficiency of heat sinks through the use of different types of phase change materials. Technologies 6:5. https://doi.org/10.3390/technologies6010005

    Article  Google Scholar 

  55. Warzoha RJ, Fleischer AS (2014) Improved heat recovery from paraffin-based phase change materials due to the presence of percolating graphene networks. Int J Heat Mass Transf 79:314–323. https://doi.org/10.1016/j.ijheatmasstransfer.2014.08.009

    Article  Google Scholar 

  56. Saeed RM, Schlegel JP, Castano C, Sawafta R (2018) Preparation and enhanced thermal performance of novel (solid to gel) form-stable eutectic PCM modified by nano-graphene platelets. J Energy Storage 15:91–102. https://doi.org/10.1016/j.est.2017.11.003

    Article  Google Scholar 

  57. Gariboldi E, Colombo LPM, Fagiani D, Li Z (2019) Methods to characterize effective thermal conductivity, diffusivity and thermal response in change materials. Materials (Basel) 12:1–23

    Article  Google Scholar 

  58. Xiao J, Huang J, Zhu P, Wang C, Li X (2014) Preparation, characterization and thermal properties of binary nitrate salts/expanded graphite as composite phase change material. Thermochim Acta 587:52–58. https://doi.org/10.1016/j.tca.2014.04.021

    Article  Google Scholar 

  59. Sabrina Ferfera R, Madani B, Serhane R (2020) Investigation of heat transfer improvement at idealized microcellular scale for metal foam incorporated with paraffin. Int J Therm Sci 156:106444. https://doi.org/10.1016/j.ijthermalsci.2020.106444

    Article  Google Scholar 

  60. García-Vidal UO, Luna-Sánchez JL, Jiménez-Pérez JL, Correa-Pacheco ZN, López-Gamboa G, Gutiérrez-Fuentes R et al (2023) Graphene nanoplatelets composite resin curing and thermal diffusivity determination by photothermal techniques. Thermochim Acta 721:179453. https://doi.org/10.1016/j.tca.2023.179453

    Article  Google Scholar 

  61. Liu S, Yan Z, Fu L, Yang H (2017) Hierarchical nano-activated silica nanosheets for thermal energy storage. Sol Energy Mater Sol Cells 167:140–149. https://doi.org/10.1016/j.solmat.2017.04.009

    Article  Google Scholar 

  62. Xu X, Cui H, Memon SA, Yang H, Tang W (2017) Development of novel composite PCM for thermal energy storage using CaCl2·6H2O with graphene oxide and SrCl2·6H2O. Energy Build 156:163–172. https://doi.org/10.1016/j.enbuild.2017.09.081

    Article  Google Scholar 

  63. K P V, Suresh S, Praveen B, Venugopal A, C Nair S (2017) Pentaerythritol with alumina nano additives for thermal energy storage applications. J Energy Storage 13:359–377. https://doi.org/10.1016/j.est.2017.08.002.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arun Kumar Tiwari .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tiwari, A.K., Kumar, A., Said, Z. (2023). Influence of Nanoparticles on Thermophysical Properties of PCMs. In: Said, Z., Pandey, A.K. (eds) Nano Enhanced Phase Change Materials. Materials Horizons: From Nature to Nanomaterials. Springer, Singapore. https://doi.org/10.1007/978-981-99-5475-9_4

Download citation

Publish with us

Policies and ethics