Skip to main content

Enhancing Heat Transfer Performance with Nano Encapsulated Phase Change Materials: Synthesis and Characterization

  • Chapter
  • First Online:
Nano Enhanced Phase Change Materials

Abstract

Because of its high energy storage density and ability to maintain a constant temperature, phase change materials, also known as PCMs, are becoming an increasingly popular potential material for a wide variety of thermal equipment. PCMs, on the other hand, have a low thermal conductivity, which severely limits their usefulness. In order to increase the thermal conductivity of PCMs, the researchers have investigated the possibility of incorporating nanoparticles (NPs) into PCMs. Nevertheless, before putting this strategy into action, one needs to have a complete comprehension of what it entails. The purpose of this book chapter is to investigate the synthesis of nanoparticles-encapsulated phase change materials (NEPCM) and their characterization, and the effect that NPs have on the thermophysical properties, stability, and heat transfer applications. The challenges for the use of NEPCM materials are also explained in this book chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. B.S.R. of W. Energy (2019) Statistical Review, BP Stat. Rev. World Energy 68:50

    Google Scholar 

  2. Sheikholeslami M, Keshteli AN, Babazadeh H (2020) Nanoparticles favorable effects on performance of thermal storage units. J Mol Liq 300:112329

    Article  Google Scholar 

  3. Kalapala L, Devanuri JK (2018) Influence of operational and design parameters on the performance of a PCM based heat exchanger for thermal energy storage—a review. J Energy Storage 20:497–519

    Article  Google Scholar 

  4. Eanest Jebasingh B, Valan Arasu A (2020) A comprehensive review on latent heat and thermal conductivity of nanoparticle dispersed phase change material for low temperature applications. Energy Storage Mater 24:52–74

    Google Scholar 

  5. Lin Y, Jia Y, Alva G, Fang G (2018) Review on thermal conductivity enhancement, thermal properties and applications of phase change materials in thermal energy storage. Renew Sustain Energy Rev 82:2730–2742

    Article  Google Scholar 

  6. Shah KW (2018) A review on enhancement of phase change materials—a nanomaterials perspective. Energy Build 175:57–68

    Article  Google Scholar 

  7. Tao YB, He YL (2018) A review of phase change material and performance enhancement method for latent heat storage system. Renew Sustain Energy Rev 93:245–259

    Article  Google Scholar 

  8. Asgharian H, Baniasadi E (2019) A review on modeling and simulation of solar energy storage systems based on phase change materials. J Energy Storage 21:186–201

    Article  Google Scholar 

  9. Mahdi JM, Lohrasbi S, Nsofor EC (2019) Hybrid heat transfer enhancement for latent-heat thermal energy storage systems: a review. Int J Heat Mass Transf 137:630–649

    Article  Google Scholar 

  10. Kalapala L, Devanuri JK (2020) Optimization of fin parameters to reduce entropy generation and melting time of a latent heat storage unit. J Sol Energy Eng 142:1–12

    Article  Google Scholar 

  11. Uma Maheswararao G, Majumadar A, Niphadkar T, Jaya Krishna D (2019) An image processing algorithm to estimate the melt fraction and energy storage of a PCM enclosed in a spherical capsule. Int J Energy Res 43:5535–5547

    Google Scholar 

  12. Salunkhe PB, Jaya Krishna D (2017) Investigations on latent heat storage materials for solar water and space heating applications. J Energy Storage 12:243–260

    Google Scholar 

  13. Katekar VP, Deshmukh SS (2020) A review of the use of phase change materials on performance of solar stills. J Energy Storage 30:101398

    Article  Google Scholar 

  14. Jiménez-Xamán C et al (2019) Solar chimneys with a phase change material for buildings: an overview using CFD and global energy balance. Energy Build 186:384–404

    Article  Google Scholar 

  15. Kant K, Shukla A, Sharma A, Kumar A, Jain A (2016) Thermal energy storage based solar drying systems: a review. Innov Food Sci Emerg Technol 34:86–99

    Article  Google Scholar 

  16. Ling Z et al (2014) Review on thermal management systems using phase change materials for electronic components, Li-ion batteries and photovoltaic modules. Renew Sustain Energy Rev 31:427–438

    Article  Google Scholar 

  17. Waqas A, Ji J, Xu L, Ali M, Zeashan, Alvi J (2018) Thermal and electrical management of photovoltaic panels using phase change materials—a review. Renew Sustain Energy Rev 92:254–271

    Google Scholar 

  18. Jaya Krishna D (2018) Operational time and melt fraction based optimization of a phase change material longitudinal fin heat sink. J Therm Sci Eng Appl 10:1–4

    Google Scholar 

  19. Teng T-P, Yu C-C (2012) Characteristics of phase-change materials containing oxide nano-additives for thermal storage. Nanoscale Res Lett 7(1):611

    Article  MathSciNet  ADS  Google Scholar 

  20. Mohamed NH, Soliman FS, El Maghraby H, Moustfa YM (2017) Thermal conductivity enhancement of treated petroleum waxes, as phase change material, by α nano alumina: energy storage. Renew Sustain Energy Rev 70:1052–1058

    Article  Google Scholar 

  21. Latibari ST, Mehrali M, Mehrali M, Mahlia TMI, Metselaar HSC (2013) Synthesis, characterization and thermal properties of nanoencapsulated phase change materials via sol–gel method. Energy 61:664–672

    Article  Google Scholar 

  22. Harikrishnan S, Deenadhayalan M, Kalaiselvam S (2014) Experimental investigation of solidification and melting characteristics of composite PCMs for building heating application. Energy Convers Manag 86:864–872

    Article  Google Scholar 

  23. Bahiraei F, Fartaj A, Nazri G-A (2017) Experimental and numerical investigation on the performance of carbon-based nanoenhanced phase change materials for thermal management applications. Energy Convers Manag 153:115–128

    Article  Google Scholar 

  24. Sayyar M, Weerasiri RR, Soroushian P, Lu J (2014) Experimental and numerical study of shape-stable phase-change nanocomposite toward energy-efficient building constructions. Energy Build 75:249–255

    Article  Google Scholar 

  25. Ramakrishnan S, Wang X, Sanjayan J, Wilson J (2017) Heat transfer performance enhancement of paraffin/expanded perlite phase change composites with graphene nano-platelets. Energy Procedia 105:4866–4871

    Article  Google Scholar 

  26. Parameshwaran R, Deepak K, Saravanan R, Kalaiselvam S (2014) Preparation, thermal and rheological properties of hybrid nanocomposite phase change material for thermal energy storage. Appl Energy 115:320–330

    Article  Google Scholar 

  27. Zabalegui A, Lokapur D, Lee H (2014) Nanofluid PCMs for thermal energy storage: latent heat reduction mechanisms and a numerical study of effective thermal storage performance. Int J Heat Mass Transf 78:1145–1154

    Article  Google Scholar 

  28. Zeng JL, Cao Z, Yang DW, Sun LX, Zhang L (2010) Thermal conductivity enhancement of Ag nanowires on an organic phase change material. J Therm Anal Calorim 101(1):385–389

    Article  Google Scholar 

  29. Kumar KRS, Dinesh R, Roseline AA, Kalaiselvam S (2017) Performance analysis of heat pipe aided NEPCM heat sink for transient electronic cooling. Microelectron Reliab 73:1–13

    Article  Google Scholar 

  30. Colla L, Fedele L, Mancin S, Danza L, Manca O (2017) Nano-PCMs for enhanced energy storage and passive cooling applications. Appl Therm Eng 110:584–589

    Article  Google Scholar 

  31. Colla L, Ercole D, Fedele L, Mancin S, Manca O, Bobbo S (2017) Nano-phase change materials for electronics cooling applications. J Heat Transf 139(5):52406

    Article  Google Scholar 

  32. Colla L, Fedele L, Mancin S, Buonomo B, Ercole D, Manca O (2017) Nano-PCMs for passive electronic cooling applications. J Phys Conf Ser 655(1):12030. Krishna J, Kishore PS, Solomon AB (2017) Heat pipe with nano enhanced-PCM for electronic cooling application. Exp Therm Fluid Sci 81:84–92

    Google Scholar 

  33. Hussain SI, Dinesh R, Roseline AA, Dhivya S, Kalaiselvam S (2017) Enhanced thermal performance and study the influence of sub cooling on activated carbon dispersed eutectic PCM for cold storage applications. Energy Build 143:17–24

    Article  Google Scholar 

  34. Al-Waeli AHA et al (2017) Evaluation of the nanofluid and nano-PCM based photovoltaic thermal (PVT) system: AN experimental study. Energy Convers Manag 151:693–708

    Article  Google Scholar 

  35. Al-Waeli AHA, Chaichan MT, Kazem HA, Sopian K (2017) Comparative study to use nano-(Al2O3, CuO, and SiC) with water to enhance photovoltaic thermal PV/T collectors. Energy Convers Manag 148:963–973

    Article  Google Scholar 

  36. Altohamy AA, Raboo MFA, Sakr RY, Attia AAA (2015) Effect of water based Al2O3 nanoparticle PCM on cool storage performance. Appl Therm Eng 84:331–338

    Article  Google Scholar 

  37. Shao X-F, Mo S-P, Chen Y, Yin T, Yang Z, Jia L-S, Cheng Z-D (2017) Solidification behavior of hybrid TiO2 nanofluids containing nanotubes and nanoplatelets for cold thermal energy storage. Appl Therm Eng 117:427–436

    Article  Google Scholar 

  38. Wang Q, Wei W, Li D, Wang F, Arici M (2019) Experimental investigation of thermal radiative properties of Al2O3-paraffin nanofluid. Sol Energy 177:420–426

    Article  ADS  Google Scholar 

  39. Liu Y, Yang Y (2017) Investigation of specific heat and latent heat enhancement of hydrate salt based TiO2 nanofluid phase change material. Appl Therm Eng 124:533–538

    Article  Google Scholar 

  40. Munyalo JM, Zhang X, Li Y, Chen Y, Xu X (2018) Latent heat of fusion prediction for nanofluid based phase change material. Appl Therm Eng 130:1590–1597

    Article  Google Scholar 

  41. Tumirah K, Hussein MZ, Zulkarnain Z, Rafeadah R (2014) Nano-encapsulated organic phase change material based on copolymer nanocomposites for thermal energy storage. Energy 66:881–890

    Article  Google Scholar 

  42. Zhang GH, Bon SAF, Zhao CY (2012) Synthesis, characterization and thermal properties of novel nanoencapsulated phase change materials for thermal energy storage. Sol Energy 86:1149–1154

    Article  ADS  Google Scholar 

  43. Chen ZH, Yu F, Zeng XR, Zhang ZG (2012) Preparation, characterization and thermal properties of nanocapsules containing phase change material n-dodecanol by miniemulsion polymerization with polymerizable emulsifier. Appl Energy 91:7–12

    Article  Google Scholar 

  44. Mohammadi B, Najafi FS, Ranjbar H, Mohammadi J, Zakaryazadeh M (2016) Nanoencapsulation of butyl palmitate in polystyrene-co-methyl methacrylate shell for thermal energy storage application. Energy Build 118:99–105

    Article  Google Scholar 

  45. Wang Y, Wang JP, Nan GH, Wang H, Li W, Zhang XX (2015) A novel method for the preparation of narrow-disperse nanoencapsulated phase change materials by phase inversion emulsification and suspension polymerization. Ind Eng Chem Res 54:9307–9313

    Article  Google Scholar 

  46. Fang Y, Kuang S, Gao X, Zhang Z (2008) Preparation and characterization of novel nanoencapsulated phase change materials. Energy Convers Manage 49:3704–3707

    Article  Google Scholar 

  47. Yuan HM, Bai H, Lu X, Zhao XC, Zhang X, Zhang J et al (2019) Effect of alkaline pH on formation of lauric acid/SiO2 nanocapsules via sol-gel process for solar energy storage. Sol Energy 185:374–386

    Article  ADS  Google Scholar 

  48. Zhu YL, Chi Y, Liang SE, Luo X, Chen KP, Tian CR et al (2018) Novel metal coated nanoencapsulated phase change materials with high thermal conductivity for thermal energy storage. Sol Energy Mater Sol Cells 176:212–221

    Article  Google Scholar 

  49. Wang F, Liu J, Fang X, Zhnag Z (2016) Graphite nanoparticles-dispersed paraffin/water emulsion with enhanced thermal-physical property and phot-o-thermal performance. Sol Energy Mater Sol Cell 147:101–107

    Article  Google Scholar 

  50. Xiao X, Zhang P, Li M (2013) Preparation and thermal characterization of paraffin/metal foam composite phase change material. Appl Energy 112:1357–1366

    Article  Google Scholar 

  51. Rufuss DDW, Suganthi L, Iniyan S, Davies PA (2018) Effects of nanoparticle-enhanced phase change material (NPCM) on solar still productivity. J Clean Prod 192:9–29

    Article  Google Scholar 

  52. Elgafy A, Lafdi K (2005) Effect of carbon nanofiber additives on thermal behavior of phase change materials. Carbon 43(15):3067–3074

    Article  Google Scholar 

  53. Parameshwaran R, Jayavel R, Kalaiselvam S (2013) Study on thermal properties of organic ester phase-change material embedded with silver nanoparticles. J Therm Anal Calorim 114(2):845–858

    Article  Google Scholar 

  54. Suresh Kumar KR, Kalaiselvam S (2017) Experimental investigations on the thermophysical properties of CuO-palmitic acid phase change material for heating applications. J Therm Anal Calorim 129(3):1647–1657

    Google Scholar 

  55. Chen Y, Zhang Q, Wen X, Yin H, Liu J (2018) A novel CNT encapsulated phase change material with enhanced thermal conductivity and photo-thermal conversion performance. Sol Energy Mater Sol Cells 184:82–90

    Article  Google Scholar 

  56. Wang J, Xie H, Guo Z, Guan L, Li Y (2014) Improved thermal properties of paraffin wax by the addition of TiO2 nanoparticles. Appl Therm Eng 73(2):1541–1547

    Article  Google Scholar 

  57. Guo S, Liu Q, Zhao J, Jin G, Wang X, Lang Z, He W, Gong Z (2017) Evaluation and comparison of erythritol-based composites with addition of expanded graphite and carbon nanotubes. Appl Energy 205:703–709

    Article  Google Scholar 

  58. Saeed RM, Schlegel JP, Castano C, Sawafta R (2018) Preparation and enhanced thermal performance of novel (solid to gel) form-stable eutectic PCM modified by nano-graphene platelets. J Energy Storage 15:91–102

    Article  Google Scholar 

  59. Harikrishnan S, Imran Hussain S, Devaraju A, Sivasamy P, Kalaiselvam S (2017) Improved performance of a newly prepared nano-enhanced phase change material for solar energy storage. J Mech Sci Technol 31(10):4903–4910

    Google Scholar 

  60. Wang J, Xie H, Xin Z (2009) Thermal properties of paraffin based composites containing multi-walled carbon nanotubes. Thermochim Acta 488(1–2):39–42

    Article  Google Scholar 

  61. Warzoha RJ, Rao A, Weigand R, Fleischer AS (2012) Experimental characterization of the thermal diffusivity of paraffin phase change material embedded with herringbone style graphite nanofibers. In: Proceedings of the ASME 2012, summer heat transfer conference, ASME, Puerto Rico, HT, pp 307–315 58043

    Google Scholar 

  62. Warzoha RJ, Fleischer AS (2014) Improved heat recovery from paraffin-based phase change materials due to the presence of percolating graphene networks. Int J Heat Mass Transf 79:314–323

    Article  Google Scholar 

  63. He Q, Wang S, Tong M, Liu Y (2012) Experimental study on thermophysical properties of nanofluids as phase-change material (PCM) in low temperature cool storage. Energy Convers Manag 64:199–205

    Article  Google Scholar 

  64. Lin SC, Al-Kayiem HH (2016) Evaluation of copper nanoparticles–Paraffin wax compositions for solar thermal energy storage. Sol Energy 132:267–278

    Article  ADS  Google Scholar 

  65. Shaikh S, Lafdi K, Hallinan K (2008) Carbon nanoadditives to enhance latent energy storage of phase change materials. J Appl Phys 103:094302–094306

    Article  ADS  Google Scholar 

  66. Sheremet MA, Bondareva N, Zhao F-Y (2020) The brick thermal performance improvement using phase change materials. J Appl Comput Mech

    Google Scholar 

  67. Kumar S, Kumar A, Kothiyal AD, Bisht MS (2018) A review of flow and heat transfer behaviour of nanofluids in micro channel heat sinks. Therm Sci Eng Prog 8:477–493

    Article  Google Scholar 

  68. Sidik NAC, Muhamad MNAW, Japar WMAA, Rasid ZA (2017) An overview of passive techniques for heat transfer augmentation in microchannel heat sink. Int Commun Heat Mass Transf 88:74–83

    Article  Google Scholar 

  69. Sindhu S, Gireesha B (2020) Entropy generation analysis of hybrid nanofluid in a microchannel with slip flow, convective boundary and nonlinear heat flux. Int J Numer Methods Heat Fluid Flow

    Google Scholar 

  70. Delgado M, Lázaro A, Mazo J, Zalba B (2012) Review on phase change material emulsions and microencapsulated phase change material slurries: materials, heat transfer studies and applications. Renew Sustain Energy Rev 16(1):253–273

    Article  Google Scholar 

  71. Chen L, Wang T, Zhao Y, Zhang X-R (2014) Characterization of thermal and hydro-dynamic properties for microencapsulated phase change slurry (MPCS). Energy Convers Manage 79:317–333

    Article  Google Scholar 

  72. Wang Y, Chen Z, Ling X (2016) An experimental study of the latent functionally thermal fluid with micro-encapsulated phase change material particles flowing in microchannels. Appl Therm Eng 105:209–216

    Article  Google Scholar 

  73. Sabbah R, Farid MM, Al-Hallaj S (2009) Micro-channel heat sink with slurry of water with micro-encapsulated phase change material: 3D-numerical study. Appl Therm Eng 29(2–3):445–454

    Article  Google Scholar 

  74. Liu L, Alva G, Jia Y, Huang X, Fang G (2017) Dynamic thermal characteristics analysis of microencapsulated phase change suspensions flowing through rectangular mini-channels for thermal energy storage. Energy Build 134:37–51

    Article  Google Scholar 

  75. Farid MM, Al-Hallaj S (2012) Microchannel heat exchanger with micro-encapsulated phase change material for high flux cooling. Google Patents

    Google Scholar 

  76. Wang XJ (2014) Liquid coolant with microencapsulated phase change materials for automotive batteries. Google Patents

    Google Scholar 

  77. Ho C, Chang PC, Yan WM, Amani P (2018) Thermal and hydrodynamic characteristics of divergent rectangular minichannel heat sinks. Int J Heat Mass Transf 122:264–274

    Article  Google Scholar 

  78. Ho C, Chang PC, Yan WM, Amani M (2018) Comparative study on thermal performance of MEPCM suspensions in parallel and divergent minichannel heat sinks. Int Commun Heat Mass Transf 94:96–105

    Article  Google Scholar 

  79. Liu C, Rao Z, Zhao J, Huo Y, Li Y (2015) Review on nanoencapsulated phase change materials: preparation, characterization and heat transfer enhancement. Nano Energy 13:814–826

    Article  Google Scholar 

  80. Barlak S, Sara ON, Karaipekli A, Yapıcı S (2016) Thermal conductivity and viscosity of nanofluids having nanoencapsulated phase change material. Nanoscale Microscale Thermophys Eng 20(2):85–96

    Article  ADS  Google Scholar 

  81. Seyf HR, Zhou Z, Ma H, Zhang Y (2013) Three dimensional numerical study of heat-transfer enhancement by nano-encapsulated phase change material slurry in microtube heat sinks with tangential impingement. Int J Heat Mass Transf 56(1–2):561–573

    Article  Google Scholar 

  82. Ho C, Liu YC, Ghalambaz M, Yan WM (2020) Forced convection heat transfer of nano-encapsulated phase change material (NEPCM) suspension in a mini-channel heat sink. Int J Heat Mass Transf 155:119858

    Article  Google Scholar 

  83. Ho CJ, Liu Y-C, Yang T-F, Ghalambaz M, Yan W-M (2021) Convective heat transfer of nano-encapsulated phase change material suspension in a divergent minichannel heatsink. Int J Heat Mass Transf 165:120717

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Syam Sundar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Syam Sundar, L., Jassim, E., Djavanroodi, F. (2023). Enhancing Heat Transfer Performance with Nano Encapsulated Phase Change Materials: Synthesis and Characterization. In: Said, Z., Pandey, A.K. (eds) Nano Enhanced Phase Change Materials. Materials Horizons: From Nature to Nanomaterials. Springer, Singapore. https://doi.org/10.1007/978-981-99-5475-9_3

Download citation

Publish with us

Policies and ethics