Skip to main content

Phase Change Materials (PCMs)

  • Chapter
  • First Online:
Nano Enhanced Phase Change Materials

Abstract

The book chapter focuses on the complexities of Phase Change Materials (PCMs), an emerging solution to thermal energy storage problems, with a special emphasis on nanoparticle-enhanced PCMs (NePCM). The first sections provide a full introduction to PCMs, their distinctive characteristics, and classification, followed by a critical evaluation of these materials’ selection criteria. The chapter then dives into novel ways for improving the thermal performance of PCMs, such as the use of pin–fin heat sinks, metallic foams, and nanoparticles. The preparation of NePCM, an important segment in the context of PCM applications, is investigated using single-step and two-step approaches. Finally, the chapter shows a variety of NePCM applications, from solar thermal systems to lithium batteries and building comforts, providing a thorough grasp of their use. The final sections summarize the significance and potential of PCMs and NePCMs in the context of sustainable energy storage and utilization.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Nazir H et al (2019) Recent developments in phase change materials for energy storage applications: a review. Int J Heat Mass Transf (Pergamon) 129:491–523. https://doi.org/10.1016/j.ijheatmasstransfer.2018.09.126

  2. Zahid I, Farhan M, Farooq M, Asim M, Imran M (2023) Experimental investigation for thermal performance enhancement of various heat sinks using Al2O3 NePCM for cooling of electronic devices. Case Stud Therm Eng 41:102553. https://doi.org/10.1016/J.CSITE.2022.102553

    Article  Google Scholar 

  3. Ali HM, Arshad A (2017) Experimental investigation of n-eicosane based circular pin-fin heat sinks for passive cooling of electronic devices. Int J Heat Mass Transf 112:649–661. https://doi.org/10.1016/j.ijheatmasstransfer.2017.05.004

    Article  Google Scholar 

  4. Usman H et al (2018) An experimental study of PCM based finned and un-finned heat sinks for passive cooling of electronics. Heat Mass Transf/Waerme- und Stoffuebertragung 54(12):3587–3598. https://doi.org/10.1007/s00231-018-2389-0

    Article  ADS  Google Scholar 

  5. Avci M, Yazici MY (2018) An experimental study on effect of inclination angle on the performance of a PCM-based flat-type heat sink. Appl Therm Eng 131:806–814. https://doi.org/10.1016/j.applthermaleng.2017.12.069

    Article  Google Scholar 

  6. Hemati R, Veysi F, Qaderi A (2022) Experimental investigation of the simultaneous effect of using phase change material/plate-fin heat sink on thermal performance of a power supply unit. Sustain Energy Technol Assess 52:102009. https://doi.org/10.1016/j.seta.2022.102009

    Article  Google Scholar 

  7. Pakrouh R, Hosseini MJ, Ranjbar AA, Bahrampoury R (2015) A numerical method for PCM-based pin fin heat sinks optimization. Energy Convers Manag 103:542–552. https://doi.org/10.1016/j.enconman.2015.07.003

    Article  Google Scholar 

  8. Leong KY, Chew SP, Gurunathan BA, Ku Ahmad KZ, Ong HC (2019) An experimental approach to investigate thermal performance of paraffin wax and 1-hexadecanol based heat sinks for cooling of electronic system. Int Commun Heat Mass Transf 109:104365. https://doi.org/10.1016/j.icheatmasstransfer.2019.104365

  9. Ali HM et al (2018) Thermal management of electronics: an experimental analysis of triangular, rectangular and circular pin-fin heat sinks for various PCMs. Int J Heat Mass Transf 123:272–284. https://doi.org/10.1016/j.ijheatmasstransfer.2018.02.044

    Article  Google Scholar 

  10. Arshad A, Ali HM, Khushnood S, Jabbal M (2018) Experimental investigation of PCM based round pin-fin heat sinks for thermal management of electronics: effect of pin-fin diameter. Int J Heat Mass Transf 117:861–872. https://doi.org/10.1016/j.ijheatmasstransfer.2017.10.008

    Article  Google Scholar 

  11. Dammak K, El Hami A (2021) Thermal reliability-based design optimization using Kriging model of PCM based pin fin heat sink. Int J Heat Mass Transf 166:120745. https://doi.org/10.1016/j.ijheatmasstransfer.2020.120745

    Article  Google Scholar 

  12. Srikanth R, Balaji C (2017) Experimental investigation on the heat transfer performance of a PCM based pin fin heat sink with discrete heating. Int J Therm Sci 111:188–203. https://doi.org/10.1016/j.ijthermalsci.2016.08.018

    Article  Google Scholar 

  13. Shang B, Ma Y, Hu R, Yuan C, Hu J, Luo X (2017) Passive thermal management system for downhole electronics in harsh thermal environments. Appl Therm Eng 118:593–599. https://doi.org/10.1016/j.applthermaleng.2017.01.118

    Article  Google Scholar 

  14. Kalbasi R, Afrand M, Alsarraf J, Tran MD (2019) Studies on optimum fins number in PCM-based heat sinks. Energy 171:1088–1099. https://doi.org/10.1016/j.energy.2019.01.070

    Article  Google Scholar 

  15. Mahmoud S, Tang A, Toh C, AL-Dadah R, Soo SL (2013) Experimental investigation of inserts configurations and PCM type on the thermal performance of PCM based heat sinks. Appl Energy 112:1349–1356. https://doi.org/10.1016/j.apenergy.2013.04.059

  16. Gharbi S, Harmand S, Ben Jabrallah S (2015) Experimental comparison between different configurations of PCM based heat sinks for cooling electronic components. Appl Therm Eng 87:454–462. https://doi.org/10.1016/j.applthermaleng.2015.05.024

  17. Saha SK, Srinivasan K, Dutta P (2008) Studies on optimum distribution of fins in heat sinks filled with phase change materials. J Heat Transf 130(3). https://doi.org/10.1115/1.2804948/475456

  18. Arshad A, Ali HM, Yan WM, Hussein AK, Ahmadlouydarab M (2018) An experimental study of enhanced heat sinks for thermal management using n-eicosane as phase change material. Appl Therm Eng 132:52–66. https://doi.org/10.1016/j.applthermaleng.2017.12.066

    Article  Google Scholar 

  19. Baby R, Balaji C (2013) A neural network-based optimization of thermal performance of phase change material-based finned heat sinks—an experimental study. Exp Heat Transf 26(5):431–452. https://doi.org/10.1080/08916152.2012.705573

    Article  ADS  Google Scholar 

  20. Feng D et al (2019) Review on nanoporous composite phase change materials: fabrication, characterization, enhancement and molecular simulation. Renew Sustain Energy Rev (Pergamon) 109:578–605. https://doi.org/10.1016/j.rser.2019.04.041

  21. ur Rehman T, Ambreen T, Niyas H, Kanti P, Ali HM, Park CW (2022) Experimental investigation on the performance of RT-44HC-nickel foam-based heat sinks for thermal management of electronic gadgets. Int J Heat and Mass Transf 188:122591. https://doi.org/10.1016/j.ijheatmasstransfer.2022.122591

  22. Ali HM (2022) Heat transfer augmentation of porous media (metallic foam) and phase change material based heat sink with variable heat generations: an experimental evaluation. Sustain Energy Technol Assess 52:102218. https://doi.org/10.1016/j.seta.2022.102218

    Article  Google Scholar 

  23. Hu X, Gong X (2021) Experimental study on the thermal response of PCM-based heat sink using structured porous material fabricated by 3D printing. Case Stud Therm Eng 24:100844. https://doi.org/10.1016/j.csite.2021.100844

    Article  Google Scholar 

  24. ur Rehman T, Ali HM (2020) Thermal performance analysis of metallic foam-based heat sinks embedded with RT-54HC paraffin: an experimental investigation for electronic cooling. J Therm Anal Calorim 140(3):979–990. https://doi.org/10.1007/s10973-019-08961-8

  25. Ferfera RS, Madani B (2020) Thermal characterization of a heat exchanger equipped with a combined material of phase change material and metallic foams. Int J Heat Mass Transf 148:119162. https://doi.org/10.1016/j.ijheatmasstransfer.2019.119162

    Article  Google Scholar 

  26. Hu X, Zhu F, Gong X (2019) Experimental and numerical study on the thermal behavior of phase change material infiltrated in low porosity metal foam. J Energy Storage 26:101005. https://doi.org/10.1016/j.est.2019.101005

    Article  Google Scholar 

  27. Zhang P, Meng ZN, Zhu H, Wang YL, Peng SP (2017) Melting heat transfer characteristics of a composite phase change material fabricated by paraffin and metal foam. Appl Energy 185:1971–1983. https://doi.org/10.1016/j.apenergy.2015.10.075

    Article  Google Scholar 

  28. Veismoradi A, Modir A, Ghalambaz M, Chamkha A (2020) A phase change/metal foam heatsink for thermal management of battery packs. Int J Therm Sci 157:106514. https://doi.org/10.1016/j.ijthermalsci.2020.106514

    Article  Google Scholar 

  29. Zheng H, Wang C, Liu Q, Tian Z, Fan X (2018) Thermal performance of copper foam/paraffin composite phase change material. Energy Convers Manag 157:372–381. https://doi.org/10.1016/j.enconman.2017.12.023

    Article  Google Scholar 

  30. Zhang L, Feng G (2020) A one-step-assembled three-dimensional network of silver/polyvinylpyrrolidone (PVP) nanowires and its application in energy storage. Nanoscale 12(19):10573–10583. https://doi.org/10.1039/d0nr00991a

    Article  Google Scholar 

  31. Suresh Kumar KR, Dinesh R, Ameelia Roseline A, Kalaiselvam S (2017) Performance analysis of heat pipe aided NEPCM heat sink for transient electronic cooling. Microelectron Reliabil 73:1–13. https://doi.org/10.1016/j.microrel.2017.04.006

  32. Parameshwaran R, Deepak K, Saravanan R, Kalaiselvam S (2014) Preparation, thermal and rheological properties of hybrid nanocomposite phase change material for thermal energy storage. Appl Energy 115:320–330. https://doi.org/10.1016/j.apenergy.2013.11.029

    Article  Google Scholar 

  33. Zeng JL, Cao Z, Yang DW, Sun LX, Zhang L (2009) Thermal conductivity enhancement of Ag nanowires on an organic phase change material. J Therm Anal Calorim 101(1):385–389. https://doi.org/10.1007/S10973-009-0472-Y

    Article  Google Scholar 

  34. Teng TP, Yu CC (2012) Characteristics of phase-change materials containing oxide nano-additives for thermal storage. Nanoscale Res Lett 7(1):1–10. https://doi.org/10.1186/1556-276X-7-611

    Article  MathSciNet  Google Scholar 

  35. Mohamed NH, Soliman FS, El Maghraby H, Moustfa YM (2017) Thermal conductivity enhancement of treated petroleum waxes, as phase change material, by a nano alumina: energy storage. Renew Sustain Energy Rev (Elsevier Ltd.) 70:1052–1058. https://doi.org/10.1016/j.rser.2016.12.009

  36. Narayanan SS et al (2017) Development of sunlight-driven eutectic phase change material nanocomposite for applications in solar water heating. Resour Effic Technol 3(3):272–279. https://doi.org/10.1016/j.reffit.2016.12.004

    Article  Google Scholar 

  37. Tahan Latibari S, Mehrali M, Mehrali M, Indra Mahlia TM, Cornelis Metselaar HS (2013) Synthesis, characterization and thermal properties of nanoencapsulated phase change materials via sol-gel method. Energy 61:664–672. https://doi.org/10.1016/j.energy.2013.09.012

  38. Hayat MA, Chen Y, Bevilacqua M, Li L, Yang Y (2022) Characteristics and potential applications of nano-enhanced phase change materials: a critical review on recent developments. Sustain Energy Technol Assess (Elsevier) 50:101799. https://doi.org/10.1016/j.seta.2021.101799

  39. Sharma S, Micheli L, Chang W, Tahir AA, Reddy KS, Mallick TK (2017) Nano-enhanced phase change material for thermal management of BICPV. Appl Energy 208:719–733. https://doi.org/10.1016/J.APENERGY.2017.09.076

    Article  Google Scholar 

  40. Kumar PM, Mylsamy K (2020) A comprehensive study on thermal storage characteristics of nano-CeO2 embedded phase change material and its influence on the performance of evacuated tube solar water heater. Renew Energy 162:662–676. https://doi.org/10.1016/j.renene.2020.08.122

    Article  Google Scholar 

  41. Manoj Kumar P, Mylsamy K (2019) Experimental investigation of solar water heater integrated with a nanocomposite phase change material: energetic and exergetic approach. J Therm Anal Calorim 136(1):121–132. https://doi.org/10.1007/s10973-018-7937-9

  42. Wu W et al (2018) Experimental study on the performance of a novel solar water heating system with and without PCM. Sol Energy 171:604–612. https://doi.org/10.1016/j.solener.2018.07.005

    Article  ADS  Google Scholar 

  43. Manoj Kumar P et al (2021) Investigating performance of solar photovoltaic using a nano phase change material. Mater Today: Proc 47:5029–5033. https://doi.org/10.1016/j.matpr.2021.04.615

  44. Sharshir SW, Peng G, Wu L, Essa FA, Kabeel AE, Yang N (2017) The effects of flake graphite nanoparticles, phase change material, and film cooling on the solar still performance. Appl Energy 191:358–366. https://doi.org/10.1016/j.apenergy.2017.01.067

    Article  Google Scholar 

  45. Behura A, Gupta HK (2019) Use of nanoparticle-embedded phase change material in solar still for productivity enhancement. Mater Today: Proc (Elsevier) 3904–3907. https://doi.org/10.1016/j.matpr.2020.06.285

  46. Al-Waeli AHA et al (2017) Evaluation of the nanofluid and nano-PCM based photovoltaic thermal (PVT) system: an experimental study. Energy Convers Manag 151:693–708. https://doi.org/10.1016/j.enconman.2017.09.032

    Article  Google Scholar 

  47. Nada SA, El-Nagar DH, Hussein HMS (2018) Improving the thermal regulation and efficiency enhancement of PCM-integrated PV modules using nano particles. Energy Convers Manag 166:735–743. https://doi.org/10.1016/j.enconman.2018.04.035

    Article  Google Scholar 

  48. Islam MM, Hasanuzzaman M, Rahim NA, Pandey AK, Rawa M, Kumar L (2021) Real time experimental performance investigation of a NePCM based photovoltaic thermal system: an energetic and exergetic approach. Renew Energy 172:71–87. https://doi.org/10.1016/j.renene.2021.02.169

    Article  Google Scholar 

  49. Hachem F, Abdulhay B, Ramadan M, El Hage H, El Rab MG, Khaled M (2017) Improving the performance of photovoltaic cells using pure and combined phase change materials—experiments and transient energy balance. Renew Energy 107:567–575. https://doi.org/10.1016/j.renene.2017.02.032

    Article  Google Scholar 

  50. Kumar RR, Samykano M, Pandey AK, Said Z, Kadirgama K, Tyagi VV (2022) Experimental investigations on thermal properties of copper (II) oxide nanoparticles enhanced inorganic phase change materials for solar thermal energy storage applications. In: 2022 Advances in science and engineering technology international conferences (ASET). IEEE, pp 1–6. https://doi.org/10.1109/ASET53988.2022.9734898

  51. Olczak P, Matuszewska D, Zabagło J (2020) The comparison of solar energy gaining effectiveness between flat plate collectors and evacuated tube collectors with heat pipe: case study. Energies 13(7):1829. https://doi.org/10.3390/en13071829

    Article  Google Scholar 

  52. Sarafraz MM et al (2019) Experimental investigation on thermal performance of a PV/T-PCM (photovoltaic/thermal) system cooling with a PCM and nanofluid. Energies 12(13):2572. https://doi.org/10.3390/en12132572

    Article  Google Scholar 

  53. Lari MO, Sahin AZ (2018) Effect of retrofitting a silver/water nanofluid-based photovoltaic/thermal (PV/T) system with a PCM-thermal battery for residential applications. Renew Energy 122:98–107. https://doi.org/10.1016/j.renene.2018.01.034

    Article  Google Scholar 

  54. Alshukri MJ, Eidan AA, Najim SI (2021) The influence of integrated micro-ZnO and nano-CuO particles/paraffin wax as a thermal booster on the performance of heat pipe evacuated solar tube collector. J Energy Storage 37(February):102506. https://doi.org/10.1016/j.est.2021.102506

  55. Shoeibi S, Kargarsharifabad H, Mirjalily SAA, Muhammad T (2022) Solar district heating with solar desalination using energy storage material for domestic hot water and drinking water—environmental and economic analysis. Sustain Energy Technol Assess 49:101713. https://doi.org/10.1016/j.seta.2021.101713

    Article  Google Scholar 

  56. Elbahjaoui R, El Qarnia H, El Ganaoui M (2017) Solidification heat transfer characteristics of nanoparticle-enhanced phase change material inside rectangular slabs. Energy Procedia 139:590–595. https://doi.org/10.1016/j.egypro.2017.11.258

    Article  Google Scholar 

  57. Colla L, Fedele L, Mancin S, Danza L, Manca O (2017) Nano-PCMs for enhanced energy storage and passive cooling applications. Appl Therm Eng 110:584–589. https://doi.org/10.1016/j.applthermaleng.2016.03.161

    Article  Google Scholar 

  58. Kean TH, Sidik NAC (2019) Thermal performance analysis of nanoparticles enhanced phase change material (NEPCM) in cold thermal energy storage (CTES). CFD Lett 11(4):79–91

    Google Scholar 

  59. Leong KY, Abdul Rahman MR, Gurunathan BA (2019) Nano-enhanced phase change materials: a review of thermo-physical properties, applications and challenges. J Energy Storage (Elsevier) 21:18–31. https://doi.org/10.1016/j.est.2018.11.008

  60. Kibria MA, Anisur MR, Mahfuz MH, Saidur R, Metselaar IHSC (2015) A review on thermophysical properties of nanoparticle dispersed phase change materials. Energy Convers Manag (Pergamon) 95:69–89. https://doi.org/10.1016/j.enconman.2015.02.028

  61. Zeng JL et al (2006) Study of a PCM based energy storage system containing Ag nanoparticles. J Therm Anal Calorim 87(2):371–375. https://doi.org/10.1007/S10973-006-7783-Z

  62. Kant K, Shukla A, Sharma A, Henry Biwole P (2017) Heat transfer study of phase change materials with graphene nano particle for thermal energy storage. Solar Energy 146:453–463. https://doi.org/10.1016/j.solener.2017.03.013

  63. Singh RP, Kaushik SC, Rakshit D (2018) Melting phenomenon in a finned thermal storage system with graphene nano-plates for medium temperature applications. Energy Convers Manag 163:86–99. https://doi.org/10.1016/j.enconman.2018.02.053

    Article  Google Scholar 

  64. Jiang X, Luo R, Peng F, Fang Y, Akiyama T, Wang S (2015) Synthesis, characterization and thermal properties of paraffin microcapsules modified with nano-Al2O3. Appl Energy 137:731–737. https://doi.org/10.1016/j.apenergy.2014.09.028

    Article  Google Scholar 

  65. He Q, Wang S, Tong M, Liu Y (2012) Experimental study on thermophysical properties of nanofluids as phase-change material (PCM) in low temperature cool storage. Energy Convers Manag (Pergamon) 199–205. https://doi.org/10.1016/j.enconman.2012.04.010

  66. Marcos MA et al (2020) Nepcm based on silver dispersions in poly(ethylene glycol) as a stable solution for thermal storage. Nanomaterials 10(1):19. https://doi.org/10.3390/nano10010019

    Article  ADS  Google Scholar 

  67. Hossain R, Mahmud S, Dutta A, Pop I (2015) Energy storage system based on nanoparticle-enhanced phase change material inside porous medium. Int J Therm Sci 91:49–58. https://doi.org/10.1016/j.ijthermalsci.2014.12.023

    Article  Google Scholar 

  68. Harikrishnan S, Kalaiselvam S (2012) Preparation and thermal characteristics of CuO-oleic acid nanofluids as a phase change material. Thermochim Acta 533:46–55. https://doi.org/10.1016/j.tca.2012.01.018

    Article  Google Scholar 

  69. Khan Z, Khan ZA (2020) Role of extended fins and graphene nano-platelets in coupled thermal enhancement of latent heat storage system. Energy Convers Manag 224:113349. https://doi.org/10.1016/j.enconman.2020.113349

    Article  Google Scholar 

  70. Alqahtani T et al (2022) Experimental study of thermal energy battery working with nano-enhanced phase change material. Case Stud Therm Eng 34:102051. https://doi.org/10.1016/j.csite.2022.102051

    Article  Google Scholar 

  71. Hajizadeh MR, Selimefendigil F, Muhammad T, Ramzan M, Babazadeh H, Li Z (2020) Solidification of PCM with nano powders inside a heat exchanger. J Mol Liq 306:112892. https://doi.org/10.1016/j.molliq.2020.112892

    Article  Google Scholar 

  72. Mahdi JM, Nsofor EC (2016) Solidification of a PCM with nanoparticles in triplex-tube thermal energy storage system. Appl Therm Eng 108:596–604. https://doi.org/10.1016/j.applthermaleng.2016.07.130

    Article  Google Scholar 

  73. Krishna J, Kishore PS, Solomon AB (2017) Heat pipe with nano enhanced-PCM for electronic cooling application. Exp Thermal Fluid Sci 81:84–92. https://doi.org/10.1016/j.expthermflusci.2016.10.014

    Article  Google Scholar 

  74. Ghalambaz M et al (2021) Thermal energy storage and heat transfer of nano-enhanced phase change material (NePCM) in a shell and tube thermal energy storage (TES) unit with a partial layer of eccentric copper foam. Molecules 26(5):1491. https://doi.org/10.3390/molecules26051491

    Article  Google Scholar 

  75. Abidi A, Rawa M, Khetib Y, Sindi HFA, Sharifpur M, Cheraghian G (2021) Simulation of melting and solidification of graphene nanoparticles-PCM inside a dual tube heat exchanger with extended surface. J Energy Storage 44:103265. https://doi.org/10.1016/j.est.2021.103265

    Article  Google Scholar 

  76. Masoumi H, Haghighi Khoshkhoo R, Mirfendereski SM (2022) Experimental and numerical investigation of melting/solidification of nano-enhanced phase change materials in shell & tube thermal energy storage systems. J Energy Storage 47:103561. https://doi.org/10.1016/j.est.2021.103561

  77. Khan Z, Khan ZA, Sewell P (2019) Heat transfer evaluation of metal oxides based nano-PCMs for latent heat storage system application. Int J Heat Mass Transf 144:118619. https://doi.org/10.1016/j.ijheatmasstransfer.2019.118619

    Article  Google Scholar 

  78. Gorzin M, Hosseini MJ, Rahimi M, Bahrampoury R (2019) Nano-enhancement of phase change material in a shell and multi-PCM-tube heat exchanger. J Energy Storage 22:88–97. https://doi.org/10.1016/j.est.2018.12.023

    Article  Google Scholar 

  79. Nóbrega CRES, Ismail KAR, Lino FAM (2021) Thermal performance of bare and finned tubes submersed in nano-PCM mixture. J Braz Soc Mech Sci Eng 43(1):1–14. https://doi.org/10.1007/s40430-020-02740-5

    Article  Google Scholar 

  80. Yadav C, Sahoo RR (2021) Effect of nano-enhanced PCM on the thermal performance of a designed cylindrical thermal energy storage system. Exp Heat Transf 34(4):356–375. https://doi.org/10.1080/08916152.2020.1751744

    Article  ADS  Google Scholar 

  81. Khatibi M, Nemati-Farouji R, Taheri A, Kazemian A, Ma T, Niazmand H (2021) Optimization and performance investigation of the solidification behavior of nano-enhanced phase change materials in triplex-tube and shell-and-tube energy storage units. J Energy Storage 33:102055. https://doi.org/10.1016/j.est.2020.102055

    Article  Google Scholar 

  82. Yang L, Ji W, Zhang Z, Jin X (2019) Thermal conductivity enhancement of water by adding graphene nano-sheets: consideration of particle loading and temperature effects. Int Commun Heat Mass Transfer 109:104353. https://doi.org/10.1016/j.icheatmasstransfer.2019.104353

    Article  Google Scholar 

  83. Fu Y et al (2021) Battery thermal management system using nano enhanced phase change materials. IOP Confe Ser: Earth Environ Sci 850(1):012031. https://doi.org/10.1088/1755-1315/850/1/012031

    Article  Google Scholar 

  84. Babapoor A, Azizi M, Karimi G (2015) Thermal management of a Li-ion battery using carbon fiber-PCM composites. Appl Therm Eng 82:281–290. https://doi.org/10.1016/j.applthermaleng.2015.02.068

    Article  Google Scholar 

  85. Jilte R, Afzal A, Panchal S (2021) A novel battery thermal management system using nano-enhanced phase change materials. Energy 219:119564. https://doi.org/10.1016/j.energy.2020.119564

    Article  Google Scholar 

  86. Liu X, Wang C, Wu T, Li Z, Wu C (2022) A novel stable and flexible composite phase change materials for battery thermal management. Appl Therm Eng 212:118510. https://doi.org/10.1016/j.applthermaleng.2022.118510

    Article  Google Scholar 

  87. Rostami S, Nadooshan AA, Raisi A, Bayareh M (2022) Effect of using a heatsink with nanofluid flow and phase change material on thermal management of plate lithium-ion battery. J Energy Storage 52:104686. https://doi.org/10.1016/j.est.2022.104686

    Article  Google Scholar 

  88. Goli P, Legedza S, Dhar A, Salgado R, Renteria J, Balandin AA (2014) Graphene-enhanced hybrid phase change materials for thermal management of Li-ion batteries. J Power Sources 248:37–43. https://doi.org/10.1016/j.jpowsour.2013.08.135

    Article  Google Scholar 

  89. Huang YH, Cheng WL, Zhao R (2019) Thermal management of Li-ion battery pack with the application of flexible form-stable composite phase change materials. Energy Convers Manag 182:9–20. https://doi.org/10.1016/j.enconman.2018.12.064

    Article  Google Scholar 

  90. Ma C, Zhang Y, Hu S, Liu X, He S (2022) A copper nanoparticle enhanced phase change material with high thermal conductivity and latent heat for battery thermal management. J Loss Prev Process Ind 78:104814. https://doi.org/10.1016/j.jlp.2022.104814

    Article  Google Scholar 

  91. Menale C, D’Annibale F, Mazzarotta B, Bubbico R (2019) Thermal management of lithium-ion batteries: an experimental investigation. Energy 182:57–71. https://doi.org/10.1016/j.energy.2019.06.017

    Article  Google Scholar 

  92. Nematpour Keshteli A, Sheikholeslami M (2019) Nanoparticle enhanced PCM applications for intensification of thermal performance in building: a review. J Mol Liq (Elsevier) 274:516–533. https://doi.org/10.1016/j.molliq.2018.10.151

  93. Kasaeian A, Bahrami L, Pourfayaz F, Khodabandeh E, Yan WM (2017) Experimental studies on the applications of PCMs and nano-PCMs in buildings: a critical review. Energy Build (Elsevier) 154:96–112. https://doi.org/10.1016/j.enbuild.2017.08.037

  94. Pasupathy A, Velraj R (2008) Effect of double layer phase change material in building roof for year round thermal management. Energy Build 40(3):193–203. https://doi.org/10.1016/j.enbuild.2007.02.016

    Article  Google Scholar 

  95. Ma Z, Lin W, Sohel MI (2016) Nano-enhanced phase change materials for improved building performance. Renew Sustain Energy Rev (Pergamon) 58:1256–1268. https://doi.org/10.1016/j.rser.2015.12.234

  96. Li D, Wu Y, Liu C, Zhang G, Arıcı M (2018) Energy investigation of glazed windows containing nano-PCM in different seasons. Energy Convers Manag 172:119–128. https://doi.org/10.1016/j.enconman.2018.07.015

    Article  Google Scholar 

  97. Barreneche C, Martín M, Calvo-de la Rosa J, Majó M, Fernández AI (2019) Own-synthetize nanoparticles to develop nano-enhanced phase change materials (NEPCM) to improve the energy efficiency in buildings. Molecules 24(7):1232. https://doi.org/10.3390/MOLECULES24071232

  98. Yu S, Jeong SG, Chung O, Kim S (2014) Bio-based PCM/carbon nanomaterials composites with enhanced thermal conductivity. Solar Energy Mater Solar Cells 120(PART B):549–554. https://doi.org/10.1016/j.solmat.2013.09.037

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Farooq .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zahid, I., Farooq, M., Farhan, M. (2023). Phase Change Materials (PCMs). In: Said, Z., Pandey, A.K. (eds) Nano Enhanced Phase Change Materials. Materials Horizons: From Nature to Nanomaterials. Springer, Singapore. https://doi.org/10.1007/978-981-99-5475-9_2

Download citation

Publish with us

Policies and ethics