Skip to main content

Challenges and Difficulties in Developing Nano-enhanced Phase Change Materials and Way Forward

  • Chapter
  • First Online:
Nano Enhanced Phase Change Materials

Part of the book series: Materials Horizons: From Nature to Nanomaterials ((MHFNN))

  • 128 Accesses

Abstract

The discovery of nano-enhanced phase change materials (NePCMs) has great promise for energy-efficient applications in a variety of fields, including thermal energy storage, electronics cooling, and solar thermal energy conversion. However, obstacles like high cost, stability, durability, environmental effect, and safety concerns are now impeding their broad implementation. This paper discusses the opportunities and challenges of NePCMs, emphasizing the importance of advanced synthesis methods, renewable energy sources, recycling and reusing raw materials, life cycle analyses, biodegradable materials, and eco-friendly manufacturing processes in improving their feasibility and sustainability. Ongoing research in the field is aimed at developing innovative nanoparticles, improving thermal conductivity, increasing stability and durability, and implementing green and sustainable production procedures. NePCMs can play a critical role in meeting the growing need for sustainable and energy-efficient solutions. Through continued research and development, the use of advanced synthesis methods, and the adoption of sustainable and eco-friendly manufacturing processes, NePCMs can emerge as a viable and sustainable solution for a wide range of thermal energy storage and conversion applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hayat MA et al (2022) Characteristics and potential applications of nano-enhanced phase change materials: a critical review on recent developments. Sustain Energy Technol Assess 50:101799

    Google Scholar 

  2. Thalji MR et al (2021) W18O49 nanowires-graphene nanocomposite for asymmetric supercapacitors employing AlCl3 aqueous electrolyte. Chem Eng J 409:128216

    Article  Google Scholar 

  3. Nazari MA et al (2021) A review of nanomaterial incorporated phase change materials for solar thermal energy storage. Sol Energy 228:725–743

    Article  ADS  Google Scholar 

  4. Tariq SL et al (2020) Nanoparticles enhanced phase change materials (NePCMs)—a recent review. Appl Therm Eng 176:115305

    Article  Google Scholar 

  5. Kalidasan B et al (2022) Nano additive enhanced salt hydrate phase change materials for thermal energy storage. Int Mater Rev 2022:1–44

    Google Scholar 

  6. He M et al (2019) Preparation, thermal characterization and examination of phase change materials (PCMs) enhanced by carbon-based nanoparticles for solar thermal energy storage. J Energy Storage 25:100874

    Article  Google Scholar 

  7. Li W et al (2021) Heat transfer enhancement of nano-encapsulated phase change material (NEPCM) using metal foam for thermal energy storage. Int J Heat Mass Transf 166:120737

    Article  Google Scholar 

  8. Kalidasan B et al (2023) Experimental investigation of graphene nanoplatelets enhanced low temperature ternary eutectic salt hydrate phase change material. Energies 16(4):1574

    Article  Google Scholar 

  9. Lin Y et al (2018) Review on thermal conductivity enhancement, thermal properties and applications of phase change materials in thermal energy storage. Renew Sustain Energy Rev 82:2730–2742

    Article  Google Scholar 

  10. Elarem R et al (2022) Experimental investigations on thermophysical properties of nano-enhanced phase change materials for thermal energy storage applications. Alex Eng J 61(9):7037–7044

    Article  Google Scholar 

  11. Fadl M, Mahon D, Eames PC (2021) Thermal performance analysis of compact thermal energy storage unit—An experimental study. Int J Heat Mass Transf 173:121262

    Article  Google Scholar 

  12. Tyagi V et al (2021) Phase change material based advance solar thermal energy storage systems for building heating and cooling applications: a prospective research approach. Sustain Energy Technol Assess 47:101318

    Google Scholar 

  13. Kalidasan B et al (2022) Graphene-silver hybrid nanoparticle based organic phase change materials for enhanced thermal energy storage. Sustainability 14(20):13240

    Article  Google Scholar 

  14. Sikiru S et al (2022) Recent advances and impact of phase change materials on solar energy: a comprehensive review. J Energy Storage 53:105200

    Article  Google Scholar 

  15. Wang J et al (2022) Nanoencapsulated n-tetradecane phase change materials with melamine–urea–formaldehyde–TiO2 hybrid shell for cold energy storage. Colloids Surf A 636:128162

    Article  Google Scholar 

  16. Sipponen MH et al (2020) Lignin-fatty acid hybrid nanocapsules for scalable thermal energy storage in phase-change materials. Chem Eng J 393:124711

    Article  Google Scholar 

  17. Peng H et al (2021) A review on synthesis, characterization and application of nanoencapsulated phase change materials for thermal energy storage systems. Appl Therm Eng 185:116326

    Article  Google Scholar 

  18. Lionetto F et al (2019) A study on exfoliation of expanded graphite stacks in candelilla wax. Materials 12(16):2530

    Article  ADS  Google Scholar 

  19. Tan S (2019) Development of encapsulation methods for organic-based phase change materials in water

    Google Scholar 

  20. Zhu Q et al (2022) Recent advances in nanotechnology-based functional coatings for the built environment. Mater Today Adv 15:100270

    Article  Google Scholar 

  21. Hu Y et al (2017) Preparation of Li4SiO4 sorbents for carbon dioxide capture via a spray-drying technique. Energy Fuels 32(4):4521–4527

    Article  Google Scholar 

  22. Mourad A et al (2022) Recent advances on the applications of phase change materials for solar collectors, practical limitations, and challenges: a critical review. J Energy Storage 49:104186

    Article  Google Scholar 

  23. Anand A et al (2022) Development of nano-enhanced phase change materials using manganese dioxide nanoparticles obtained through green synthesis. Energy Storage 4(5):e344

    Article  Google Scholar 

  24. Terna AD et al (2021) The future of semiconductors nanoparticles: synthesis, properties and applications. Mater Sci Eng B 272:115363

    Article  Google Scholar 

  25. Wang Q, Yang L, Song J (2023) Preparation, thermal conductivity, and applications of nano-enhanced phase change materials (NEPCMs) in solar heat collection: a review. J Energy Storage 63:107047

    Article  Google Scholar 

  26. Jamkhande PG et al (2019) Metal nanoparticles synthesis: an overview on methods of preparation, advantages and disadvantages, and applications. J Drug Deliv Sci Technol 53:101174

    Article  Google Scholar 

  27. Ghalambaz M et al (2022) Unsteady natural convection of nano-encapsulated phase change materials (NEPCMs) inside a random porous medium considering local thermal non-equilibrium condition. Waves Random Complex Media 1–22

    Google Scholar 

  28. Bouafia A et al (2021) Effect of ferric chloride concentration on the type of magnetite (Fe3O4) nanoparticles biosynthesized by aqueous leaves extract of artemisia and assessment of their antioxidant activities. J Cluster Sci 32(4):1033–1041

    Article  Google Scholar 

  29. Chung YT et al (2015) Synthesis of minimal-size ZnO nanoparticles through sol–gel method: Taguchi design optimisation. Mater Des 87:780–787

    Article  ADS  Google Scholar 

  30. Dong Y et al (2015) Effect of operating conditions on size and morphology of amylose nanoparticles prepared by precipitation. Starch-Stärke 67(3–4):365–372

    Article  Google Scholar 

  31. He Q et al (2017) Room-temperature and solution-processable Cu-doped nickel oxide nanoparticles for efficient hole-transport layers of flexible large-area perovskite solar cells. ACS Appl Mater Interfaces 9(48):41887–41897

    Article  Google Scholar 

  32. Kalidasan B et al (2022) Optical absorptivity and thermal conductivity analysis of silver nanoparticle dispersed salt hydrate PCM. In: 2022 IEEE international conference on power and energy (PECon). IEEE

    Google Scholar 

  33. Leong KY, Rahman MRA, Gurunathan BA (2019) Nano-enhanced phase change materials: a review of thermo-physical properties, applications and challenges. J Energy Storage 21:18–31

    Article  Google Scholar 

  34. Kalidasan B et al (2023) Energizing organic phase change materials using silver nanoparticles for thermal energy storage. J Energy Storage 58:106361

    Article  Google Scholar 

  35. Kumar R et al (2022) Investigation of thermal performance and chemical stability of graphene enhanced phase change material for thermal energy storage. Phys Chem Earth Parts A/B/C 128:103250

    Article  Google Scholar 

  36. Kumar R et al (2022) Effect of surfactant on functionalized multi-walled carbon nano tubes enhanced salt hydrate phase change material. J Energy Storage 55:105654

    Article  Google Scholar 

  37. Kumar R et al (2022) A comparative study on thermophysical properties of functionalized and non-functionalized multi-walled carbon nano tubes (MWCNTs) enhanced salt hydrate phase change material. Sol Energy Mater Sol Cells 240:111697

    Article  Google Scholar 

  38. Kibria M et al (2015) A review on thermophysical properties of nanoparticle dispersed phase change materials. Energy Convers Manage 95:69–89

    Article  Google Scholar 

  39. Maghrabie HM et al (2022) Phase change materials based on nanoparticles for enhancing the performance of solar photovoltaic panels: a review. J Energy Storage 48:103937

    Article  Google Scholar 

  40. Badmus SO et al (2021) Environmental risks and toxicity of surfactants: overview of analysis, assessment, and remediation techniques. Environ Sci Pollut Res 1–20

    Google Scholar 

  41. Chokkareddy R et al (2018) Current advances in biosynthesis of silver nanoparticles and their applications. In: Green metal nanoparticles: synthesis, characterization and their applications, pp 165–198

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. K. Pandey or Zafar Said .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pandey, A.K., Said, Z. (2023). Challenges and Difficulties in Developing Nano-enhanced Phase Change Materials and Way Forward. In: Said, Z., Pandey, A.K. (eds) Nano Enhanced Phase Change Materials. Materials Horizons: From Nature to Nanomaterials. Springer, Singapore. https://doi.org/10.1007/978-981-99-5475-9_12

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-5475-9_12

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-5474-2

  • Online ISBN: 978-981-99-5475-9

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics