Skip to main content

Soft Computing Tools (Intelligent Techniques) for Nano-enhanced PCM

  • Chapter
  • First Online:
Nano Enhanced Phase Change Materials

Part of the book series: Materials Horizons: From Nature to Nanomaterials ((MHFNN))

  • 128 Accesses

Abstract

The application of the machine learning (ML) approach in the development of nanophase change materials (PCMs) signifies a promising step forward in the development of energy storage technologies. The nuptials of machine learning with nanotechnology has resulted in a new paradigm for developing, creating, and synthesizing high-performance PCM materials. ML algorithms have established their ability to forecast PCM material qualities, optimize synthesis conditions, and decrease the cost and time involved with traditional trial-and-error techniques. Material processing and synthesis optimization is another possible use of machine learning in nano PCM research. Machine learning algorithms may analyze data from multiple manufacturing steps and optimize elements such as pressure, temperature, and reaction time to produce desired material properties. This might lead to more effective and affordable synthesis techniques, as well as more exact control over material attributes. Machine learning may also improve the accuracy of micro PCM simulations and models. This will enable more complete and precise simulations of the behavior and features of micro PCMs, leading to improved comprehension and design of these types of materials. The combination of nanotechnologies, artificial intelligence, and other new technologies such as 3D printing and microfluidics creates new opportunities for inventing and producing complex materials with unparalleled performance. To fully realize the promise of nano PCMs and ML in addressing the pressing challenges of energy sustainability and climate change, it is critical to continue investing in development and research in this sector.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kumar A, Tiwari AK, Said Z (2021) A comprehensive review analysis on advances of evacuated tube solar collector using nanofluids and PCM. Sustain Energy Technol Assess 47:101417. https://doi.org/10.1016/j.seta.2021.101417

    Article  Google Scholar 

  2. Venkateshwar K, Joshy N, Simha H, Mahmud S (2019) Quantifying the nanoparticles concentration in nano-PCM. J Nanopart Res 21:260. https://doi.org/10.1007/s11051-019-4716-x

    Article  Google Scholar 

  3. Nawsud ZA, Altouni A, Akhijahani HS, Kargarsharifabad H (2022) A comprehensive review on the use of nano-fluids and nano-PCM in parabolic trough solar collectors (PTC). Sustain Energy Technol Assess 51:101889. https://doi.org/10.1016/J.SETA.2021.101889

    Article  Google Scholar 

  4. Al-Waeli AHA, Kazem HA, Chaichan MT, Sopian K (2019) Experimental investigation of using nano-PCM/nanofluid on a photovoltaic thermal system (PVT): technical and economic study. Therm Sci Eng Prog 11:213–230. https://doi.org/10.1016/J.TSEP.2019.04.002

    Article  Google Scholar 

  5. Al-Waeli AHA, Chaichan MT, Sopian K, Kazem HA, Mahood HB, Khadom AA (2019) Modeling and experimental validation of a PVT system using nanofluid coolant and nano-PCM. Sol Energy 177:178–191. https://doi.org/10.1016/J.SOLENER.2018.11.016

    Article  ADS  Google Scholar 

  6. Al-Waeli AHA, Sopian K, Chaichan MT, Kazem HA, Ibrahim A, Mat S et al (2017) Evaluation of the nanofluid and nano-PCM based photovoltaic thermal (PVT) system: an experimental study. Energy Convers Manag 151:693–708. https://doi.org/10.1016/J.ENCONMAN.2017.09.032

    Article  Google Scholar 

  7. Safaei MR, Goshayeshi HR, Chaer I (2019) Solar still efficiency enhancement by using graphene oxide/paraffin nano-PCM. Energies (Basel) 12:2002. https://doi.org/10.3390/en12102002

    Article  Google Scholar 

  8. Sheikholeslami M (2018) Numerical simulation for solidification in a LHTESS by means of nano-enhanced PCM. J Taiwan Inst Chem Eng 86:25–41. https://doi.org/10.1016/J.JTICE.2018.03.013

    Article  Google Scholar 

  9. Indirani S, Arjunan S (2022) Selection and synthesis of thermal energy storage PCM with silicon carbide for biomedical applications. Appl Nanosci 12:2915–2922. https://doi.org/10.1007/s13204-022-02584-6

    Article  ADS  Google Scholar 

  10. Al-Waeli AHA, Sopian K, Kazem HA, Yousif JH, Chaichan MT, Ibrahim A et al (2018) Comparison of prediction methods of PV/T nanofluid and nano-PCM system using a measured dataset and artificial neural network. Sol Energy 162:378–396. https://doi.org/10.1016/J.SOLENER.2018.01.026

    Article  ADS  Google Scholar 

  11. Ghasemi K, Tasnim S, Mahmud S (2022) PCM, nano/microencapsulation and slurries: a review of fundamentals, categories, fabrication, numerical models and applications. Sustain Energy Technol Assess 52:102084. https://doi.org/10.1016/J.SETA.2022.102084

    Article  Google Scholar 

  12. Alqaed S, Mustafa J, Sharifpur M (2022) Annual energy analysis of a building equipped with CaCl2·6H2O as PCM and CaCl2·6H2O/CsxWO3 as nano PCM—useless of adding nanoparticles. J Build Eng 53:104527. https://doi.org/10.1016/J.JOBE.2022.104527

    Article  Google Scholar 

  13. Tasnim SH, Hossain R, Mahmud S, Dutta A (2015) Convection effect on the melting process of nano-PCM inside porous enclosure. Int J Heat Mass Transf 85:206–220. https://doi.org/10.1016/J.IJHEATMASSTRANSFER.2015.01.073

    Article  Google Scholar 

  14. Ebadi S, Tasnim SH, Aliabadi AA, Mahmud S (2018) Melting of nano-PCM inside a cylindrical thermal energy storage system: numerical study with experimental verification. Energy Convers Manag 166:241–259. https://doi.org/10.1016/J.ENCONMAN.2018.04.016

    Article  Google Scholar 

  15. Kok B (2020) Examining effects of special heat transfer fins designed for the melting process of PCM and Nano-PCM. Appl Therm Eng 170:114989. https://doi.org/10.1016/J.APPLTHERMALENG.2020.114989

    Article  Google Scholar 

  16. Al-Jethelah M, Tasnim SH, Mahmud S, Dutta A (2018) Nano-PCM filled energy storage system for solar-thermal applications. Renew Energy 126:137–155. https://doi.org/10.1016/J.RENENE.2018.02.119

    Article  Google Scholar 

  17. Biswas K, Lu J, Soroushian P, Shrestha S (2014) Combined experimental and numerical evaluation of a prototype nano-PCM enhanced wallboard. Appl Energy 131:517–529. https://doi.org/10.1016/J.APENERGY.2014.02.047

    Article  Google Scholar 

  18. Maher H, Rocky KA, Bassiouny R, Saha BB (2021) Synthesis and thermal characterization of paraffin-based nanocomposites for thermal energy storage applications. Therm Sci Eng Prog 22:100797. https://doi.org/10.1016/J.TSEP.2020.100797

    Article  Google Scholar 

  19. Rostami S, Afrand M, Shahsavar A, Sheikholeslami M, Kalbasi R, Aghakhani S et al (2020) A review of melting and freezing processes of PCM/nano-PCM and their application in energy storage. Energy 211:118698. https://doi.org/10.1016/J.ENERGY.2020.118698

    Article  Google Scholar 

  20. Zhang GH, Zhao CY (2017) Synthesis and characterization of a narrow size distribution nano phase change material emulsion for thermal energy storage. Sol Energy 147:406–413. https://doi.org/10.1016/J.SOLENER.2017.03.056

    Article  ADS  Google Scholar 

  21. Gopi A, Sharma P, Sudhakar K, Ngui WK, Kirpichnikova I, Cuce E (2022) Weather impact on solar farm performance: a comparative analysis of machine learning techniques. Sustainability 15:439. https://doi.org/10.3390/su15010439

    Article  Google Scholar 

  22. Sharma P, Ramesh K, Parameshwaran R, Deshmukh SS (2022) Thermal conductivity prediction of titania-water nanofluid: a case study using different machine learning algorithms. Case Stud Therm Eng 30:101658. https://doi.org/10.1016/j.csite.2021.101658

    Article  Google Scholar 

  23. Elmaz F, Yücel Ö, Mutlu AY (2020) Predictive modeling of biomass gasification with machine learning-based regression methods. Energy 191:116541. https://doi.org/10.1016/j.energy.2019.116541

    Article  Google Scholar 

  24. Niu D, Diao L, Zang Z, Che H, Zhang T, Chen X (2021) A machine-learning approach combining wavelet packet denoising with catboost for weather forecasting. Atmosphere (Basel) 12:1618. https://doi.org/10.3390/atmos12121618

    Article  ADS  Google Scholar 

  25. Zhao X, Shirvan K, Salko RK, Guo F (2020) On the prediction of critical heat flux using a physics-informed machine learning-aided framework. Appl Therm Eng 164:114540. https://doi.org/10.1016/j.applthermaleng.2019.114540

    Article  Google Scholar 

  26. Sharma P, Said Z, Kumar A, Nižetić S, Pandey A, Hoang AT et al (2022) Recent advances in machine learning research for nanofluid-based heat transfer in renewable energy system. Energy Fuels 36:6626–6658. https://doi.org/10.1021/acs.energyfuels.2c01006

    Article  Google Scholar 

  27. Hashemi Jirandeh MR, Mohammadiun M, Mohammadiun H, Dubaie MH, Sadi M (2020) Intelligent modeling of rheological and thermophysical properties of nanoencapsulated PCM slurry. Heat Transfer 49:2080–2102. https://doi.org/10.1002/htj.21709

    Article  Google Scholar 

  28. Izadi M, Hajjar A, Alshehri HM, Sheremet M, Galal AM (2022) Charging process of a partially heated trapezoidal thermal energy storage filled by nano-enhanced PCM using controlable uniform magnetic field. Int Commun Heat Mass Transfer 138:106349. https://doi.org/10.1016/J.ICHEATMASSTRANSFER.2022.106349

    Article  Google Scholar 

  29. Liang D, Ibrahim M, Saeed T, El-Refaey AM, Li Z, Fagiry MA (2022) Simulation of a Trombe wall with a number of semicircular fins placed on the absorber plate for heating a room in the presence of nano-PCM. J Build Eng 50:104173. https://doi.org/10.1016/J.JOBE.2022.104173

    Article  Google Scholar 

  30. Ahmadi MH, Mohseni-Gharyehsafa B, Farzaneh-Gord M, Jilte RD, Kumar R, Chau Kwing (2019) Applicability of connectionist methods to predict dynamic viscosity of silver/water nanofluid by using ANN-MLP, MARS and MPR algorithms. Eng Appl Comput Fluid Mech 13:220–228. https://doi.org/10.1080/19942060.2019.1571442

  31. Anarghya A, Rao N, Nayak N, Tirpude AR, Harshith DN, Samarth BR (2018) Optimized ANN-GA and experimental analysis of the performance and combustion characteristics of HCCI engine. Appl Therm Eng 132:841–868. https://doi.org/10.1016/J.APPLTHERMALENG.2017.12.129

    Article  Google Scholar 

  32. Taghavi M, Gharehghani A, Nejad FB, Mirsalim M (2019) Developing a model to predict the start of combustion in HCCI engine using ANN-GA approach. Energy Convers Manag 195:57–69. https://doi.org/10.1016/J.ENCONMAN.2019.05.015

    Article  Google Scholar 

  33. Lotfan S, Ghiasi RA, Fallah M, Sadeghi MH (2016) ANN-based modeling and reducing dual-fuel engine’s challenging emissions by multi-objective evolutionary algorithm NSGA-II. Appl Energy 175:91–99. https://doi.org/10.1016/j.apenergy.2016.04.099

    Article  Google Scholar 

  34. Karimmaslak H, Najafi B, Band SS, Ardabili S, Haghighat-Shoar F, Mosavi A (2021) Optimization of performance and emission of compression ignition engine fueled with propylene glycol and biodiesel–diesel blends using artificial intelligence method of ANN-GA-RSM. Eng Appl Comput Fluid Mech 15:413–425. https://doi.org/10.1080/19942060.2021.1880970

    Article  Google Scholar 

  35. Thulasiram R, Murugan S, Ramasamy D, Sundaramoorthy S (2021) Modelling and evaluation of combustion emission characteristics of COME biodiesel using RSM and ANN—a lead for pollution reduction. Environ Sci Pollut Res 28:34730–34741. https://doi.org/10.1007/s11356-021-12757-5

    Article  Google Scholar 

  36. Ansari HR, Zarei MJ, Sabbaghi S, Keshavarz P (2018) A new comprehensive model for relative viscosity of various nanofluids using feed-forward back-propagation MLP neural networks. Int Commun Heat Mass Transfer 91:158–164. https://doi.org/10.1016/J.ICHEATMASSTRANSFER.2017.12.012

    Article  Google Scholar 

  37. Boonruksa P, Bello D, Zhang J, Isaacs JA, Mead JL, Woskie SR (2015) Characterization of potential exposures to nanoparticles and fibers during manufacturing and recycling of carbon nanotube reinforced polypropylene composites. Ann Occup Hyg 60:40–55. https://doi.org/10.1093/annhyg/mev073

    Article  Google Scholar 

  38. Meijuan C (2021) Application of ANN technique to predict the thermal conductivity of nanofluids: a review. J Therm Anal Calorim 145:2021–2032. https://doi.org/10.1007/s10973-021-10775-6

    Article  Google Scholar 

  39. Alrashed AAAA, Gharibdousti MS, Goodarzi M, de Oliveira LR, Safaei MR, Bandarra Filho EP (2018) Effects on thermophysical properties of carbon based nanofluids: experimental data, modelling using regression, ANFIS and ANN. Int J Heat Mass Transf 125:920–932. https://doi.org/10.1016/J.IJHEATMASSTRANSFER.2018.04.142

    Article  Google Scholar 

  40. Salameh T, Kumar PP, Sayed ET, Abdelkareem MA, Rezk H, Olabi AG. Fuzzy modeling and particle swarm optimization of Al2O3/SiO2 nanofluid. Int J Thermofluids 10:100084. https://doi.org/10.1016/J.IJFT.2021.100084

  41. Said Z, Abdelkareem MA, Rezk H, Nassef AM, Atwany HZ (2020) Stability, thermophysical and electrical properties of synthesized carbon nanofiber and reduced-graphene oxide-based nanofluids and their hybrid along with fuzzy modeling approach. Powder Technol 364:795–809. https://doi.org/10.1016/j.powtec.2020.02.026

    Article  Google Scholar 

  42. Mehrabi M, Sharifpur M, Meyer JP (2012) Application of the FCM-based neuro-fuzzy inference system and genetic algorithm-polynomial neural network approaches to modelling the thermal conductivity of alumina–water nanofluids. Int Commun Heat Mass Transfer 39:971–977. https://doi.org/10.1016/J.ICHEATMASSTRANSFER.2012.05.017

    Article  Google Scholar 

  43. Savari M, Moghaddam AH, Amiri A, Shanbedi M, Ayub MN bin (2017) Comprehensive heat transfer correlation for water/ethylene glycol-based graphene (nitrogen-doped graphene) nanofluids derived by artificial neural network (ANN) and adaptive neuro-fuzzy inference system (ANFIS). Heat and Mass Transfer/Waerme Und Stoffuebertragung 53:3073–3083. https://doi.org/10.1007/s00231-017-2047-y

  44. Ambigai R, Prabhu S (2019) Fuzzy logic algorithm based optimization of the tribological behavior of Al-Gr-Si3N4 hybrid composite. Measurement 146:736–748. https://doi.org/10.1016/J.MEASUREMENT.2019.07.025

    Article  ADS  Google Scholar 

  45. al-Swaidani AM, Khwies WT, al-Baly M, Lala T (2022) Development of multiple linear regression, artificial neural networks and fuzzy logic models to predict the efficiency factor and durability indicator of nano natural pozzolana as cement additive. J Build Eng 52:104475. https://doi.org/10.1016/J.JOBE.2022.104475

  46. Zhang X, Zhang M (2006) An adaptive fuzzy pid control of hydro-turbine governor. In: 2006 International conference on machine learning and cybernetics. IEEE, pp 325–329. https://doi.org/10.1109/ICMLC.2006.259032

  47. Wu D, Mendel JM (2019) Recommendations on designing practical interval type-2 fuzzy systems. Eng Appl Artif Intell 85:182–193. https://doi.org/10.1016/J.ENGAPPAI.2019.06.012

    Article  Google Scholar 

  48. Ghachem K, Selimefendigil F, Öztop HF, Alhadri M, Kolsi L, Alshammari N (2022) Impacts of rotating surface and area expansion during nanofluid convection on phase change dynamics for PCM packed bed installed cylinder. Alex Eng J 61:4159–4173. https://doi.org/10.1016/J.AEJ.2021.09.034

    Article  Google Scholar 

  49. Sopian K, Al-Waeli AHA, Kazem HA (2020) Energy, exergy and efficiency of four photovoltaic thermal collectors with different energy storage material. J Energy Storage 29:101245. https://doi.org/10.1016/j.est.2020.101245

    Article  Google Scholar 

  50. Cortes C, Vapnik V (1995) Support-vector networks. Mach Learn 20:273–297. https://doi.org/10.1007/BF00994018

    Article  MATH  Google Scholar 

  51. Farooq A, Moogi S, Jang SH, Ahmed A, Kim YM, Reddy Kannapu HP et al (2021) Biohydrogen synthesis from catalytic steam gasification of furniture waste using nickel catalysts supported on modified CeO2. Int J Hydrogen Energy 46:16603–16611. https://doi.org/10.1016/j.ijhydene.2020.12.086

    Article  Google Scholar 

  52. Mehrizi AA, Jafarzadeh H, Soleimani Lashkenari M, Naddafi M, Le VT, Tran VA et al (2022) Artificial neural networks modeling ethanol oxidation reaction kinetics catalyzed by polyaniline-manganese ferrite supported platinum-ruthenium nanohybrid electrocatalyst. Chem Eng Res Des 184:72–78. https://doi.org/10.1016/J.CHERD.2022.05.046

    Article  Google Scholar 

  53. Cervantes J, Garcia-Lamont F, Rodríguez-Mazahua L, Lopez A (2020) A comprehensive survey on support vector machine classification: applications, challenges and trends. Neurocomputing. https://doi.org/10.1016/j.neucom.2019.10.118

    Article  Google Scholar 

  54. Karaağaç MO, Ergün A, Ağbulut Ü, Gürel AE, Ceylan İ (2021) Experimental analysis of CPV/T solar dryer with nano-enhanced PCM and prediction of drying parameters using ANN and SVM algorithms. Sol Energy 218:57–67. https://doi.org/10.1016/J.SOLENER.2021.02.028

    Article  ADS  Google Scholar 

  55. Tanveer M, Rajani T, Rastogi R, Shao YH, Ganaie MA (2022) Comprehensive review on twin support vector machines. Ann Oper Res. https://doi.org/10.1007/s10479-022-04575-w

    Article  Google Scholar 

  56. Cervantes J, Garcia-Lamont F, Rodríguez-Mazahua L, Lopez A (2020) A comprehensive survey on support vector machine classification: applications, challenges and trends. Neurocomputing 408:189–215. https://doi.org/10.1016/J.NEUCOM.2019.10.118

    Article  Google Scholar 

  57. Elith J, Leathwick JR, Hastie T (2008) A working guide to boosted regression trees. J Anim Ecol 77:802–813. https://doi.org/10.1111/j.1365-2656.2008.01390.x

    Article  Google Scholar 

  58. Persson C, Bacher P, Shiga T, Madsen H (2017) Multi-site solar power forecasting using gradient boosted regression trees. Sol Energy 150:423–436. https://doi.org/10.1016/J.SOLENER.2017.04.066

    Article  ADS  Google Scholar 

  59. Wang F-K, Mamo T (2020) Gradient boosted regression model for the degradation analysis of prismatic cells. Comput Ind Eng 144:106494. https://doi.org/10.1016/j.cie.2020.106494

    Article  Google Scholar 

  60. Chung YS (2013) Factor complexity of crash occurrence: an empirical demonstration using boosted regression trees. Accid Anal Prev 61:107–118. https://doi.org/10.1016/J.AAP.2012.08.015

    Article  Google Scholar 

  61. Shahsavar A, Goodarzi A, Baniasad Askari I, Jamei M, Karbasi M, Afrand M (2022) The entropy generation analysis of the influence of using fins with tip clearance on the thermal management of the batteries with phase change material: application a new gradient-based ensemble machine learning approach. Eng Anal Bound Elem 140:432–446. https://doi.org/10.1016/J.ENGANABOUND.2022.04.024

    Article  Google Scholar 

  62. Said Z, Sharma P, Tiwari AK, Le VV, Huang Z, Bui VG et al (2022) Application of novel framework based on ensemble boosted regression trees and Gaussian process regression in modelling thermal performance of small-scale organic rankine cycle (ORC) using hybrid nanofluid. J Clean Prod 360:132194. https://doi.org/10.1016/j.jclepro.2022.132194

    Article  Google Scholar 

  63. Praveenkumar S, Agyekum EB, Kumar A, Velkin VI (2023) Thermo-enviro-economic analysis of solar photovoltaic/thermal system incorporated with u-shaped grid copper pipe, thermal electric generators and nanofluids: an experimental investigation. J Energy Storage 60:106611. https://doi.org/10.1016/J.EST.2023.106611

    Article  Google Scholar 

  64. Li Z, Lv S-T (2022) Performance analysis and optimization of packed-bed TES systems based on ensemble learning method. Energy Rep 8:8165–8176. https://doi.org/10.1016/j.egyr.2022.06.028

    Article  Google Scholar 

  65. Karbowniczak A, Latała H, Nęcka K, Kurpaska S, Książek L (2022) Modelling of energy storage system from photoelectric conversion in a phase change battery. Energies (Basel) 15:1132. https://doi.org/10.3390/en15031132

    Article  Google Scholar 

  66. Alkhayat G, Hasan SH, Mehmood R (2022) SENERGY: a novel deep learning-based auto-selective approach and tool for solar energy forecasting. Energies (Basel) 15:6659. https://doi.org/10.3390/en15186659

    Article  Google Scholar 

  67. He X, Zhao K, Chu X (2021) AutoML: a survey of the state-of-the-art. Knowl Based Syst 212:106622. https://doi.org/10.1016/j.knosys.2020.106622

    Article  Google Scholar 

  68. Keramati H, Hamdullahpur F, Barzegari M (2022) Deep reinforcement learning for heat exchanger shape optimization. Int J Heat Mass Transf 194:123112. https://doi.org/10.1016/j.ijheatmasstransfer.2022.123112

    Article  Google Scholar 

  69. Jafari S, Hoseinzadeh S, Sohani A (2022) Deep Q-value neural network (DQN) reinforcement learning for the techno-economic optimization of a solar-driven nanofluid-assisted desalination technology. Water (Basel) 14:2254. https://doi.org/10.3390/w14142254

    Article  Google Scholar 

  70. Alruqi M, Sharma P (2023) Biomethane production from the mixture of sugarcane vinasse, solid waste and spent tea waste: a Bayesian approach for hyperparameter optimization for Gaussian process regression. Fermentation 9:120. https://doi.org/10.3390/fermentation9020120

    Article  Google Scholar 

  71. Alruqi M, Sharma P, Deepanraj B, Shaik F (2023) Renewable energy approach towards powering the CI engine with ternary blends of algal biodiesel-diesel-diethyl ether: Bayesian optimized Gaussian process regression for modeling-optimization. Fuel 334:126827. https://doi.org/10.1016/j.fuel.2022.126827

    Article  Google Scholar 

  72. Creswell A, White T, Dumoulin V, Arulkumaran K, Sengupta B, Bharath AA (2018) Generative adversarial networks: an overview. IEEE Signal Process Mag 35:53–65. https://doi.org/10.1109/MSP.2017.2765202

    Article  ADS  Google Scholar 

  73. Marani A, Zhang L, Nehdi ML (2023) Design of concrete incorporating microencapsulated phase change materials for clean energy: a ternary machine learning approach based on generative adversarial networks. Eng Appl Artif Intell 118:105652. https://doi.org/10.1016/J.ENGAPPAI.2022.105652

    Article  Google Scholar 

  74. Gholizadeh M, Jamei M, Ahmadianfar I, Pourrajab R (2020) Prediction of nanofluids viscosity using random forest (RF) approach. Chemom Intell Lab Syst 201:104010. https://doi.org/10.1016/j.chemolab.2020.104010

    Article  Google Scholar 

  75. Zhang W, Wu C, Zhong H, Li Y, Wang L (2021) Prediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization. Geosci Front 12:469–477. https://doi.org/10.1016/j.gsf.2020.03.007

    Article  ADS  Google Scholar 

  76. Hua Y, Guo J, Zhao H (2015) Deep belief networks and deep learning. In: Proceedings of 2015 international conference on intelligent computing and internet of things. IEEE, pp 1–4. https://doi.org/10.1109/ICAIOT.2015.7111524

  77. Agga A, Abbou A, Labbadi M, el Houm Y, Ou Ali IH (2022) CNN-LSTM: an efficient hybrid deep learning architecture for predicting short-term photovoltaic power production. Electr Power Syst Res 208:107908. https://doi.org/10.1016/j.epsr.2022.107908

    Article  Google Scholar 

  78. Vu HL, Ng KTW, Richter A, An C (2022) Analysis of input set characteristics and variances on k-fold cross validation for a recurrent neural network model on waste disposal rate estimation. J Environ Manage 311:114869. https://doi.org/10.1016/J.JENVMAN.2022.114869

    Article  Google Scholar 

  79. Seo KW, Seo J, Kim K, Ji Lim S, Chung J (2021) Prediction of biogas production rate from dry anaerobic digestion of food waste: process-based approach vs. recurrent neural network black-box model. Bioresour Technol 341:125829. https://doi.org/10.1016/j.biortech.2021.125829

  80. Jaliliantabar F (2022) Thermal conductivity prediction of nano enhanced phase change materials: a comparative machine learning approach. J Energy Storage 46:103633. https://doi.org/10.1016/j.est.2021.103633

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zafar Said .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sharma, P., Pandey, A.K., Said, Z. (2023). Soft Computing Tools (Intelligent Techniques) for Nano-enhanced PCM. In: Said, Z., Pandey, A.K. (eds) Nano Enhanced Phase Change Materials. Materials Horizons: From Nature to Nanomaterials. Springer, Singapore. https://doi.org/10.1007/978-981-99-5475-9_11

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-5475-9_11

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-5474-2

  • Online ISBN: 978-981-99-5475-9

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics