Skip to main content

Applications of Nano-enhanced Phase Change Materials in Textiles

  • Chapter
  • First Online:
Nano Enhanced Phase Change Materials

Part of the book series: Materials Horizons: From Nature to Nanomaterials ((MHFNN))

  • 134 Accesses

Abstract

This chapter of the book delves into the uses of Nano-Enhanced Phase Change Materials (NePCMs) in the textile sector. The chapter begins with an overview of the thermal regulation mechanism in textiles and an introduction to Phase Change Materials (PCMs) and NePCMs before delving into the process of integrating PCM/NePCM into textiles. Following that, the chapter discusses numerous applications of NePCM in textiles in a variety of industries, including medical, aerospace, automotive and activewear, with a particular emphasis on novel applications such as firefighting suits. It also touches on a variety of additional uses. The chapter then analyses the challenges of using NePCMs in textiles, offering illuminating directions for further research. Finally, the chapter outlines NePCM's potential for increasing textile functionality and performance, demonstrating the importance of this technology in promoting innovation in the textile sector.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lu Y et al (2020) Achieving multifunctional smart textile with long afterglow and thermo-regulation via coaxial electrospinning. J Alloys Compd 812:152144. https://doi.org/10.1016/j.jallcom.2019.152144

    Article  Google Scholar 

  2. Wang Y et al (2020) Multifunctional polyimide aerogel textile inspired by polar bear hair for thermoregulation in extreme environments. Chem Eng J 390(October 2019):124623. https://doi.org/10.1016/j.cej.2020.124623

  3. Reji Kumar R, Samykano M, Pandey AK, Kadirgama K, Tyagi VV (2020) Phase change materials and nano-enhanced phase change materials for thermal energy storage in photovoltaic thermal systems: a futuristic approach and its technical challenges. Renew Sustain Energy Rev 133(September):110341. https://doi.org/10.1016/j.rser.2020.110341

  4. Du K, Calautit J, Wang Z, Wu Y, Liu H (2018) A review of the applications of phase change materials in cooling, heating and power generation in different temperature ranges. Appl Energy 220(October 2017):242–273. https://doi.org/10.1016/j.apenergy.2018.03.005

  5. Zhang S, Chen F, Pan W, Wang S, Jiang Y, Yuan D (2020) Development of heat transfer enhancement of a novel composite phase change material with adjustable phase change temperature. Sol Energy Mater Sol Cells 210(3):110457. https://doi.org/10.1016/j.solmat.2020.110457

    Article  Google Scholar 

  6. Golestaneh SI, Mosallanejad A, Karimi G, Khorram M, Khashi M (2016) Fabrication and characterization of phase change material composite fibers with wide phase-transition temperature range by co-electrospinning method. Appl Energy 182:409–417. https://doi.org/10.1016/j.apenergy.2016.08.136

    Article  Google Scholar 

  7. Liu L et al (2020) Novel bio-based phase change materials with high enthalpy for thermal energy storage. Appl Energy 268(August 2019):114979. https://doi.org/10.1016/j.apenergy.2020.114979

  8. Meng Y, Zhao Y, Zhang Y, Tang B (2020) Induced dipole force driven PEG/PPEGMA form-stable phase change energy storage materials with high latent heat. Chem Eng J 390(December 2019):124618. https://doi.org/10.1016/j.cej.2020.124618

  9. Zhang Y, Tian Y, Hu D, Fan J, Shen M, Zeng G (2019) Is vermicompost the possible in situ sorbent? Immobilization of Pb, Cd and Cr in sediment with sludge derived vermicompost, a column study. J Hazard Mater 367(December 2018):83–90. https://doi.org/10.1016/j.jhazmat.2018.12.085

  10. Li Y et al (2020) Graphene-CoO/PEG composite phase change materials with enhanced solar-to-thermal energy conversion and storage capacity. Compos Sci Technol 195(January):108197. https://doi.org/10.1016/j.compscitech.2020.108197

  11. Yang K et al (2022) Review: incorporation of organic PCMs into textiles. J Mater Sci 57(2):798–847. https://doi.org/10.1007/s10853-021-06641-3

    Article  ADS  Google Scholar 

  12. Kee SY, Munusamy Y, Ong KS, Metselaar HSC, Chee SY, Lai KC (2017) Thermal performance study of composite phase change material with polyacrylicand conformal coating. Materials (Basel) 10(8). https://doi.org/10.3390/ma10080873

  13. Sánchez P, Sánchez-Fernandez MV, Romero A, Rodríguez JF, Sánchez-Silva L (2010) Development of thermo-regulating textiles using paraffin wax microcapsules. Thermochim Acta 498(1–2):16–21. https://doi.org/10.1016/j.tca.2009.09.005

    Article  Google Scholar 

  14. Lu Y et al (2019) Novel smart textile with phase change materials encapsulated core-sheath structure fabricated by coaxial electrospinning. Chem Eng J 355(August 2018):532–539. https://doi.org/10.1016/j.cej.2018.08.189

  15. Yu X et al (2019) Corncoblike, superhydrophobic, and phase-changeable nanofibers for intelligent thermoregulating and water-repellent fabrics. ACS Appl Mater Interfaces 11(42):39324–39333. https://doi.org/10.1021/acsami.9b12934

    Article  Google Scholar 

  16. Kumar RR (2022) Experimental investigations on thermal properties of copper (II) oxide nanoparticles enhanced inorganic phase change materials for solar thermal energy storage applications

    Google Scholar 

  17. Kumar R, Samykano M, Pandey AK, Kadirgama K, Tyagi VV (2022) A comparative study on thermophysical properties of functionalized and non-functionalized multi-walled carbon nano tubes (MWCNTs) enhanced salt hydrate phase change material. Sol Energy Mater Sol Cells 240(March):111697. https://doi.org/10.1016/j.solmat.2022.111697

  18. Ibrahim NI, Al-Sulaiman FA, Rahman S, Yilbas BS, Sahin AZ (2017) Heat transfer enhancement of phase change materials for thermal energy storage applications: a critical review. Renew Sustain Energy Rev 74(October 2015):26–50. https://doi.org/10.1016/j.rser.2017.01.169

  19. Kumar R et al (2022) Phase change materials integrated solar desalination system: an innovative approach for sustainable and clean water production and storage. Renew Sustain Energy Rev 165(5):112611. https://doi.org/10.1016/j.rser.2022.112611

  20. Kalidasan B, Pandey AK, Rahman S, Yadav A, Samykano M, Tyagi VV (2022) Graphene–silver hybrid nanoparticle based organic phase change materials for enhanced thermal energy storage. Sustain 14(20). https://doi.org/10.3390/su142013240

  21. Laghari IA, Samykano M, Pandey AK, Kadirgama K, Mishra YN (2022) Binary composite (TiO2-Gr) based nano-enhanced organic phase change material: effect on thermophysical properties. J. Energy Storage 51(5):104526. https://doi.org/10.1016/j.est.2022.104526

    Article  Google Scholar 

  22. Kumar R et al (2022) Effect of surfactant on functionalized multi-walled carbon nano tubes enhanced salt hydrate phase change material. J Energy Storage 55(PC):105654. https://doi.org/10.1016/j.est.2022.105654

  23. Kumar R et al (2022) Investigation of thermal performance and chemical stability of graphene enhanced phase change material for thermal energy storage. Phys Chem Earth 128(September):103250. https://doi.org/10.1016/j.pce.2022.103250

  24. Balasubramanian K, Pandey AK, Abolhassani R, Rubahn H-G, Saidur R, Mishra YK (2022) Tetrapods based engineering of organic phase change material for thermal energy storage. SSRN Electron J 462(5):141984. https://doi.org/10.2139/ssrn.4306053

    Article  Google Scholar 

  25. Lu B, Zhang Y, Zhang J, Zhu J, Zhao H, Wang Z (2022) Preparation, optimization and thermal characterization of paraffin/nano-Fe3O4 composite phase change material for solar thermal energy storage. J Energy Storage 46(December 2021):103928. https://doi.org/10.1016/j.est.2021.103928

  26. Huo J, Yu B, Peng Z, Wu Z, Zhang L (2021) Preparation, characterization and optimization of micro-encapsulated phase change materials used for thermal storage and temperature regulation depends on response surface methodology. J Energy Storage 40(December 2020):102789. https://doi.org/10.1016/j.est.2021.102789

  27. Salyan S, Suresh S (2018) Multi-walled carbon nanotube laden with D-Mannitol as phase change material: characterization and experimental investigation. Adv Powder Technol 29(12):3183–3191. https://doi.org/10.1016/j.apt.2018.08.021

    Article  Google Scholar 

  28. Liu Y, Liu W, Zhang S, Tian D, Tian Z (2019) Preparation and characterization of new nano-particle mixed as thermal storage material. Appl Therm Eng 163:114386. https://doi.org/10.1016/j.applthermaleng.2019.114386

    Article  Google Scholar 

  29. Kalidasan B et al (2021) Synthesis and characterization of conducting polyaniline@cobalt-paraffin wax nanocomposite as nano-phase change material: enhanced thermophysical properties. Renew Energy 173:1057–1069. https://doi.org/10.1016/j.renene.2021.04.050

  30. Antony Forster Raj M, Joseph Sekhar S (2019) Investigation of energy and exergy performance on a small-scale refrigeration system with PCMs inserted between coil and wall of the evaporator cabin. J Therm Anal Calorim 136(1):355–365. https://doi.org/10.1007/s10973-018-7785-7

  31. Nazir H et al (2019) Recent developments in phase change materials for energy storage applications: a review. Int J Heat Mass Transf 129:491–523. https://doi.org/10.1016/j.ijheatmasstransfer.2018.09.126

    Article  Google Scholar 

  32. Islam MM, Pandey AK, Hasanuzzaman M, Rahim NA (2016) Recent progresses and achievements in photovoltaic-phase change material technology: a review with special treatment on photovoltaic thermal-phase change material systems. Energy Convers Manag 126:177–204. https://doi.org/10.1016/j.enconman.2016.07.075

    Article  Google Scholar 

  33. Kalidasan B, Pandey AK, Shahabuddin S, Samykano M, Thirugnanasambandam M (2020) Phase change materials integrated solar thermal energy systems: global trends and current practices in experimental approaches. J Energy Storage 27(August 2019):101118. https://doi.org/10.1016/j.est.2019.101118

  34. Sharma A, Tyagi VV, Chen CR, Buddhi D (2009) Review on thermal energy storage with phase change materials and applications. Renew Sustain Energy Rev 13(2):318–345. https://doi.org/10.1016/j.rser.2007.10.005

    Article  Google Scholar 

  35. Samykano M (2022) Role of phase change materials in thermal energy storage: potential, recent progress and technical challenges. Sustain Energy Technol Assess 52(PC):102234. https://doi.org/10.1016/j.seta.2022.102234

  36. Laghari IA, Samykano M, Pandey AK, Kadirgama K, Tyagi VV (2020) Advancements in PV-thermal systems with and without phase change materials as a sustainable energy solution: energy, exergy and exergoeconomic (3E) analytic approach. Sustain Energy Fuels 4(10):4956–4987. https://doi.org/10.1039/d0se00681e

    Article  Google Scholar 

  37. Taghilou M, Mohammadi MS (2022) Thermal management of lithium-ion battery in the presence of phase change material with nanoparticles considering thermal contact resistance. J Energy Storage 56(PB):106029. https://doi.org/10.1016/j.est.2022.106029

  38. Kazemian A, Taheri A, Sardarabadi A, Ma T, Passandideh-Fard M, Peng J (2020) Energy, exergy and environmental analysis of glazed and unglazed PVT system integrated with phase change material: an experimental approach. Sol Energy 201(February):178–189. https://doi.org/10.1016/j.solener.2020.02.096

    Article  ADS  Google Scholar 

  39. Krishna J, Kishore PS, Solomon AB (2017) Heat pipe with nano enhanced-PCM for electronic cooling application. Exp Therm Fluid Sci 81:84–92. https://doi.org/10.1016/j.expthermflusci.2016.10.014

    Article  Google Scholar 

  40. Kazemi M, Kianifar A, Niazmand H (2019) Nanoparticle loading effect on the performance of the paraffin thermal energy storage material for building applications Gum Arabic. J Therm Anal Calorim 1. https://doi.org/10.1007/s10973-019-08647-1

  41. Yousef MS, Hassan H (2019) Energetic and exergetic performance assessment of the inclusion of phase change materials (PCM) in a solar distillation system. Energy Convers Manag 179(October 2018):349–361. https://doi.org/10.1016/j.enconman.2018.10.078

  42. Johnston JH, Grindrod JE, Dodds M, Schimitschek K (2008) Composite nano-structured calcium silicate phase change materials for thermal buffering in food packaging. Curr Appl Phys 8(3–4):508–511. https://doi.org/10.1016/j.cap.2007.10.059

    Article  ADS  Google Scholar 

  43. Tao YB, You Y, He YL (2016) Lattice Boltzmann simulation on phase change heat transfer in metal foams/paraffin composite phase change material. Appl Therm Eng 93:476–485. https://doi.org/10.1016/j.applthermaleng.2015.10.016

    Article  Google Scholar 

  44. Yu XK, Tao YB, He Y, Lv ZC (2022) Preparation and performance characterization of metal foam/paraffin/ single-walled carbon nanotube composite phase change material. Int J Heat Mass Transf 191:122825. https://doi.org/10.1016/j.ijheatmasstransfer.2022.122825

    Article  Google Scholar 

  45. Amin M, Afriyanti F, Putra N (2018) Thermal properties of paraffin based nano-phase change material as thermal energy storage

    Google Scholar 

  46. Zhang M, Wang C, Luo A, Liu Z, Zhang X (2020) Molecular dynamics simulation on thermophysics of paraffin/EVA/graphene nanocomposites as phase change materials. Appl Therm Eng 166:114639. https://doi.org/10.1016/j.applthermaleng.2019.114639

    Article  Google Scholar 

  47. Karaipekli A, Biçer A, Sarı A, Veer V (2017) Thermal characteristics of expanded perlite/paraffin composite phase change material with enhanced thermal conductivity using carbon nanotubes. Energy Convers Manag 134:373–381. https://doi.org/10.1016/j.enconman.2016.12.053

    Article  Google Scholar 

  48. Salaün F, Devaux E, Bourbigot S, Rumeau P (2010) Development of phase change materials in clothing. Part I: Formulation of microencapsulated phase change. Text Res J 80(3):195–205. https://doi.org/10.1177/0040517509093436

    Article  Google Scholar 

  49. Alva G, Huang X, Liu L, Fang G (2017) Synthesis and characterization of microencapsulated myristic acid–palmitic acid eutectic mixture as phase change material for thermal energy storage. Appl Energy 203:677–685. https://doi.org/10.1016/j.apenergy.2017.06.082

    Article  Google Scholar 

  50. Yuan Y, Zhang N, Tao W, Cao X, He Y (2014) Fatty acids as phase change materials: a review. Renew Sustain Energy Rev 29:482–498. https://doi.org/10.1016/j.rser.2013.08.107

    Article  Google Scholar 

  51. Prasanna YS, Deshmukh SS (2020) Significance of nanomaterials in solar energy storage applications. Mater Today Proc 38:2633–2638. https://doi.org/10.1016/j.matpr.2020.08.218

    Article  Google Scholar 

  52. Subramanian M et al (2021) A technical review on composite phase change material based secondary assisted battery thermal management system for electric vehicles. J Clean Prod 322(June). https://doi.org/10.1016/j.jclepro.2021.129079

  53. Sun K, Kou Y, Zhang Y, Liu T, Shi Q (2020) Photo-triggered hierarchical porous carbon-based composite phase-change materials with superior thermal energy conversion capacity. ACS Sustain Chem Eng 8(8):3445–3453. https://doi.org/10.1021/acssuschemeng.9b07659

    Article  Google Scholar 

  54. Zhu FL, Feng QQ (2021) Recent advances in textile materials for personal radiative thermal management in indoor and outdoor environments. Int J Therm Sci 165(November 2020):106899. https://doi.org/10.1016/j.ijthermalsci.2021.106899

  55. Li WQ, Guo SJ, Tan L, Liu LL, Ao W (2021) Heat transfer enhancement of nano-encapsulated phase change material (NEPCM) using metal foam for thermal energy storage. Int J Heat Mass Transf 166. https://doi.org/10.1016/j.ijheatmasstransfer.2020.120737

  56. Nie C, Liu J, Deng S (2021) Effect of geometry modification on the thermal response of composite metal foam/phase change material for thermal energy storage. Int J Heat Mass Transf 165:120652. https://doi.org/10.1016/j.ijheatmasstransfer.2020.120652

    Article  Google Scholar 

  57. Mondal S (2008) Phase change materials for smart textiles—an overview. Appl Therm Eng 28(11–12):1536–1550. https://doi.org/10.1016/j.applthermaleng.2007.08.009

    Article  Google Scholar 

  58. Pause B (2018) Phase change materials and their application in coatings and laminates for textiles. Elsevier Ltd

    Google Scholar 

  59. Shi HF, Zhang XX, Wang XC, Niu JJ (2004) A new photothermal conversion and thermo-regulated fibres. Indian J Fibre Text Res 29(1):7–11

    Google Scholar 

  60. Monllor P, Bonet MA, Cases F (2007) Characterization of the behaviour of flavour microcapsules in cotton fabrics. Eur Polym J 43(6):2481–2490. https://doi.org/10.1016/j.eurpolymj.2007.04.004

    Article  Google Scholar 

  61. Onder E, Sarier N, Cimen E (2007) Encapsulation of phase change materials by complex coacervation to improve thermal performances of woven fabrics. Thermochim Acta 467(1–2):63–72. https://doi.org/10.1016/j.tca.2007.11.007

    Article  Google Scholar 

  62. de Falcão BTP (2020) Spectroscopic studies of physical properties of crystalline silicon nanoparticle systems

    Google Scholar 

  63. Ilić V et al (2009) Antifungal efficiency of corona pretreated polyester and polyamide fabrics loaded with Ag nanoparticles. J Mater Sci 44(15):3983–3990. https://doi.org/10.1007/s10853-009-3547-z

    Article  ADS  Google Scholar 

  64. Sarier N, Onder E, Ukuser G (2015) Silver incorporated microencapsulation of n-hexadecane and n-octadecane appropriate for dynamic thermal management in textiles. Thermochim Acta 613(1):17–27. https://doi.org/10.1016/j.tca.2015.05.015

    Article  ADS  Google Scholar 

  65. Tariq SL, Ali HM, Akram MA, Janjua MM, Ahmadlouydarab M (2020) Nanoparticles enhanced phase change materials (NePCMs)—a recent review. Appl Therm Eng 115305. https://doi.org/10.1016/j.applthermaleng.2020.115305

  66. Tariq SL, Ali HM, Akram MA, Janjua MM, Ahmadlouydarab M (2020) Nanoparticles enhanced phase change materials (NePCMs)—a recent review. Appl Therm Eng 176(April 2019):115305 https://doi.org/10.1016/j.applthermaleng.2020.115305

  67. Khosrojerdi M, Mortazavi SM (2013) Impregnation of a porous material with a PCM on a cotton fabric and the effect of vacuum on thermo-regulating textiles. J Therm Anal Calorim 114(3):1111–1119. https://doi.org/10.1007/s10973-013-3144-x

    Article  Google Scholar 

  68. Phelps H, Sidhu H (2015) A mathematical model for heat transfer in fire fighting suits containing phase change materials. Fire Saf J 74:43–47. https://doi.org/10.1016/j.firesaf.2015.04.007

    Article  Google Scholar 

  69. Hu Y, Huang D, Qi Z, He S, Yang H, Zhang H (2013) Modeling thermal insulation of firefighting protective clothing embedded with phase change material. Heat Mass Transf und Stoffuebertragung 49(4):567–573. https://doi.org/10.1007/s00231-012-1103-x

    Article  ADS  Google Scholar 

  70. Fonseca A, Neves SF, Campos JBLM (2021) Thermal performance of a PCM firefighting suit considering transient periods of fire exposure, post-fire exposure and resting phases. Appl Therm Eng 182(February 2020):115769. https://doi.org/10.1016/j.applthermaleng.2020.115769

  71. Niu Z, Qi S, Shuaib SSA, Yuan W (2022) Flexible, stimuli-responsive and self-cleaning phase change fiber for thermal energy storage and smart textiles. Compos Part B Eng 228(October 2021):109431. https://doi.org/10.1016/j.compositesb.2021.109431

  72. Ali MA, Fayaz, Viegas RF, Shyam Kumar MB, Kannapiran RK, Feroskhan M (2019) Enhancement of heat transfer in paraffin wax PCM using nano graphene composite for industrial helmets. J Energy Storage 26(October):100982. https://doi.org/10.1016/j.est.2019.100982

  73. Tan FL, Fok SC (2006) Cooling of helmet with phase change material. Appl Therm Eng 26(17–18):2067–2072. https://doi.org/10.1016/j.applthermaleng.2006.04.022

    Article  Google Scholar 

  74. Zhou L, Shi F, Liu G, Ye JP, Han PS, Zhang G (2021) Fabrication and characterization of in situ cross-linked electrospun poly(vinyl alcohol)/phase change material nanofibers. Sol Energy 213(November 2020):339–349. https://doi.org/10.1016/j.solener.2020.11.039

  75. Liu H, Shen H, Zhang H, Wang X (2022) Development of photoluminescence phase-change microcapsules for comfort thermal regulation and fluorescent recognition applications in advanced textiles. J Energy Storage 49(November 2021):104158. https://doi.org/10.1016/j.est.2022.104158

  76. Xia W et al (2021) Nano-hybridized form-stable ester@F-SiO2 phase change materials for melt-spun PA6 fibers engineered towards smart thermal management fabrics. Chem Eng J 403(March):126369. https://doi.org/10.1016/j.cej.2020.126369

  77. Song YN, Li Y, Yan DX, Lei J, Li ZM (2020) Novel passive cooling composite textile for both outdoor and indoor personal thermal management. Compos Part A Appl Sci Manuf 130(24):105738. https://doi.org/10.1016/j.compositesa.2019.105738

    Article  Google Scholar 

  78. Han K, Yu M (2006) Study of the preparation and properties of UV-blocking fabrics of a PET/TiO2 nanocomposite prepared by in situ polycondensation. J Appl Polym Sci 100(2):1588–1593. https://doi.org/10.1002/app.23312

    Article  Google Scholar 

  79. Potiyaraj P, Kumlangdudsana P, Dubas ST (2007) Synthesis of silver chloride nanocrystal on silk fibers. Mater Lett 61(11–12):2464–2466. https://doi.org/10.1016/j.matlet.2006.09.039

    Article  Google Scholar 

  80. Ki HY, Kim JH, Kwon SC, Jeong SH (2007) A study on multifunctional wool textiles treated with nano-sized silver. J Mater Sci 42(19):8020–8024. https://doi.org/10.1007/s10853-007-1572-3

    Article  ADS  Google Scholar 

  81. Bozzi A, Yuranova T, Guasaquillo I, Laub D, Kiwi J (2005) Self-cleaning of modified cotton textiles by TiO2 at low temperatures under daylight irradiation. J Photochem Photobiol A Chem 174(2):156–164. https://doi.org/10.1016/j.jphotochem.2005.03.019

    Article  Google Scholar 

  82. Yang Z, Peng H, Wang W, Liu T (2010) Crystallization behavior of poly(ε-caprolactone)/layered double hydroxide nanocomposites. J Appl Polym Sci 116(5):2658–2667. https://doi.org/10.1002/app

    Article  Google Scholar 

  83. Wang S, Hou W, Wei L, Jia H, Liu X, Xu B (2007) Antibacterial activity of nano-SiO2 antibacterial agent grafted on wool surface. Surf Coat Technol 202(3):460–465. https://doi.org/10.1016/j.surfcoat.2007.06.012

    Article  Google Scholar 

  84. Dastjerdi R, Montazer M, Shahsavan S (2010) A novel technique for producing durable multifunctional textiles using nanocomposite coating. Colloids Surf B Biointerfaces 81(1):32–41. https://doi.org/10.1016/j.colsurfb.2010.06.023

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reji Kumar Rajamony .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rajamony, R.K., Samykano, M. (2023). Applications of Nano-enhanced Phase Change Materials in Textiles. In: Said, Z., Pandey, A.K. (eds) Nano Enhanced Phase Change Materials. Materials Horizons: From Nature to Nanomaterials. Springer, Singapore. https://doi.org/10.1007/978-981-99-5475-9_10

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-5475-9_10

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-5474-2

  • Online ISBN: 978-981-99-5475-9

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics