Skip to main content

Granular Structure of Starch

  • Chapter
  • First Online:
Physical Modifications of Starch

Abstract

Granule shape and size are one of the most important morphological differentiating factors between different sources of starch. This chapter summarizes an overview of aspects related to the shape and size of various plant starch granules, as well as the multi-scale structure of starch. The chapter also provides the microstructural features (including surface pores, channels, cavities) and non-starch components (proteins/lipids), thus revealing the distribution of starch granule-associated proteins/lipids and their influence on starch properties. Consequently, the presence of these microstructural features or proteins/lipids may be of potential significance in the enzymatic hydrolysis and chemical reactions of starch by facilitating or preventing direct access of enzymes or chemical reagents to the internal granule matrix.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Bae JE, Hong JS, Baik MY, Choi HD, Choi HW, Kim HS (2020) Impact of starch granule-associated surface and channel proteins on physicochemical properties of corn and rice starches. Carbohydr Polym 250:116908

    Article  CAS  PubMed  Google Scholar 

  • Baldwin PM (2001) Starch granule-associated proteins and polypeptides: a review. Starch 53:475–503

    Article  Google Scholar 

  • Baldwin PM, Adler J, Davies MC, Melia CD (1994) Holes in starch granules: confocal, SEM and light microscopy studies of starch granule structure. Starch 46:341–346

    Article  CAS  Google Scholar 

  • Baldwin PM, Melia CD, Davies MC (1997) The surface chemistry of starch granules studied by time-of-flight secondary ion mass spectrometry. J Cereal Sci 26:329–346

    Article  CAS  Google Scholar 

  • Chen P, Yu L, Simon G, Petinakis E, Dean K, Chen L (2009) Morphologies and microstructures of cornstarches with different amylose–amylopectin ratios studied by confocal laser scanning microscope. J Cereal Sci 50:241–247

    Article  CAS  Google Scholar 

  • Chen L, Ma RR, Zhang ZP, Huang MG, Cai CX, Zhang RJ, McClements DJ, Tian YQ, Jin ZY (2019) Comprehensive investigation and comparison of surface microstructure of fractionated potato starches. Food Hydrocoll 89:11–19

    Article  Google Scholar 

  • Chen X, Ma M, Liu X, Zhang C, Xu Z, Li H, Sui Z, Corke H (2021) Multi-scale structure of A- and B-type granules of normal and waxy hull-less barley starch. Int J Biol Macromol 200:42–49

    Article  PubMed  Google Scholar 

  • Debet MR, Gidley MJ (2006) Three classes of starch granule swelling: influence of surface proteins and lipids. Carbohydr Polym 64:452–465

    Article  CAS  Google Scholar 

  • Dhital S, Shrestha AK, Gidley MJ (2010) Relationship between granule size and in vitro digestibility of maize and potato starches. Carbohydr Polym 82:480–488

    Article  CAS  Google Scholar 

  • Dhital SAK, Shrestha JH, Gidley MJ (2011) Physicochemical and structural properties of maize and potato starches as a function of granule size. J Agric Food Chem 59:10151–10161

    Article  CAS  PubMed  Google Scholar 

  • Dhital S, Warren FJ, Zhang B, Gidley MJ (2014) Amylase binding to starch granules under hydrolysing and non-hydrolysing conditions. Carbohydr Polym 113:97–107

    Article  CAS  PubMed  Google Scholar 

  • Dhital S, Brennan C, Gidley MJ (2019) Location and interactions of starches in planta: effects on food and nutritional functionality. Trends Food Sci Technol 93:158–166

    Article  CAS  Google Scholar 

  • Fannon JE, Hauber RJ, BeMiller JN (1992) Surface pores of starch granules. Cereal Chem 69:284–288

    Google Scholar 

  • Glaring MA, Koch CB, Blennow A (2006) Genotype-specific spatial distribution of starch molecules in the starch granule: a combined CLSM and SEM approach. Biomacromolecules 7:2310–2320

    Article  CAS  PubMed  Google Scholar 

  • Han XZ, Hamaker BR (2002) Location of starch granule-associated proteins revealed by confocal laser scanning microscopy. J Cereal Sci 35:109–116

    Article  CAS  Google Scholar 

  • Herrera MP, Vasanthan T, Hoover R (2016) Characterization of maize starch nanoparticles prepared by acid hydrolysis. Cereal Chem 93:323–330

    Article  CAS  Google Scholar 

  • Hoover R (2001) Composition, molecular structure, and physicochemical properties of tuber and root starches: a review. Carbohydr Polym 45:253–267

    Article  CAS  Google Scholar 

  • Huang JR, Wei NG, Li HL, Liu SX, Yang DQ (2014) Outer shell, inner blocklets, and granule architecture of potato starch. Carbohydr Polym 103:355–358

    Article  CAS  PubMed  Google Scholar 

  • Huber KC, BeMiller JN (1997) Visualization of channels and cavities of corn and sorghum starch granules. Cereal Chem 74:537–541

    Article  CAS  Google Scholar 

  • Huber KC, BeMiller JN (2000) Channels of maize and sorghum starch granules. Carbohydr Polym 41:269–276

    Article  CAS  Google Scholar 

  • Huber KC, Bemiller JN (2001) Location of sites of reaction within starch granules. Cereal Chem 78:173–180

    Article  CAS  Google Scholar 

  • Jane JL, Wong KS, McPherson AE (1997) Branch-structure difference in starches of A- and B-type x-ray patterns revealed by their Naegeli dextrins. Carbohydr Res 300:219–227

    Article  CAS  Google Scholar 

  • Jiranuntakul W, Sugiyama S, Tsukamoto K, Puttanlek C, Rungsardthong V, Puncha-Arnon S, Uttapap D (2013) Nano-structure of heat-moisture treated waxy and normal starches. Carbohydr Polym 97:1–8

    Article  CAS  PubMed  Google Scholar 

  • Kim HS, Huber KC (2008) Channels within soft wheat starch A- and B-type granules. J Cereal Sci 48:159–172

    Article  CAS  Google Scholar 

  • Kossmann J, Lloyd J (2000) Understanding and influencing starch biochemistry. Crit Rev Plant Sci 19:171–226

    Article  CAS  Google Scholar 

  • Le Corre D, Bras J, Dufresne A (2010) Starch nanoparticles: a review. Biomacromolecules 11:1139–1153

    Article  PubMed  Google Scholar 

  • Leonel M (2007) Analysis of the shape and size of starch grains from different botanical species. Cien Tecnol Aliment 27:579–588

    Article  Google Scholar 

  • Li JH, Vasanthan T, Hoover R, Rossnagel BG (2004) Starch from hull-less barley: V. In-vitro susceptibility of waxy, normal, and high-amylose starches towards hydrolysis by alpha-amylases and amyloglucosidase. Food Chem 84(4):621–632

    Article  CAS  Google Scholar 

  • Li CY, Cheng L, Lu ZX, Li WH, Cao LP (2012) Morphological changes of starch granules during grain filling and seed germination in wheat. Starch 64:166–170

    Article  CAS  Google Scholar 

  • Li WH, Wu GL, Luo QG, Jiang H, Zheng JM, Ouyang SH, Zhang GQ (2016) Effects of removal of surface proteins on physicochemical and structural properties of A- and B-starch isolated from normal and waxy wheat. J Food Sci Technol 53:2673–2685

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ma MT, Wang YJ, Wang MX, Jane JL, Du SK (2017) Physicochemical properties and in vitro digestibility of legume starches. Food Hydrocoll 63:249–255

    Article  CAS  Google Scholar 

  • Ma M, Xu Y, Liu Z, Sui Z, Corke H (2020a) Removal of starch granule-associated proteins promotes α-amylase hydrolysis of rice starch granule. Food Chem 330:127313

    Article  CAS  PubMed  Google Scholar 

  • Ma M, Xu Z, Li P, Sui Z, Corke H (2020b) Removal of starch granule-associated proteins affects amyloglucosidase hydrolysis of rice starch granules. Carbohydr Polym 247:116674

    Article  CAS  PubMed  Google Scholar 

  • Ma MT, Chen XJ, Zhou RZ, Li HT, Sui ZQ, Corke H (2021) Surface microstructure of rice starch is altered by removal of granule-associated proteins. Food Hydrocoll 121:107038

    Article  CAS  Google Scholar 

  • Ma MT, Wen YD, Zhang CC, Xu ZK, Li HT, Sui ZQ, Corke H (2022a) Extraction and characterization of starch granule-associated surface and channel lipids from small-granule starches that affect physicochemical properties. Food Hydrocoll 126:107370

    Article  CAS  Google Scholar 

  • Ma MT, Zhu HX, Liu ZY, Sui ZQ, Corke H (2022b) Removal of starch granule-associated proteins alters the physicochemical properties of diverse small granule starches. Food Hydrocoll 124:107318

    Article  CAS  Google Scholar 

  • Miao M, Jiang H, Jiang B, Cui SW, Jin Z, Zhang T (2012) Structure and functional properties of starches from Chinese ginkgo (Ginkgo biloba L.) nut. Food Res Int 49:303–310

    Article  CAS  Google Scholar 

  • Morrison WR (1988) Lipids in cereal starches - a review. J Cereal Sci 8:1–15

    Article  CAS  Google Scholar 

  • Morrison WRK (1990) Methods in plant biochemistry. Academic, New York

    Google Scholar 

  • Morrison WR, Laignelet B (1983) An improved colorimetric procedure for determining apparent and total amylose in cereal and other starches. J Cereal Sci 1:9–20

    Article  CAS  Google Scholar 

  • Naguleswaran S, Li JH, Vasanthan T, Bressler D (2011) Distribution of granule channels, protein, and phospholipid in triticale and corn starches as revealed by confocal laser scanning microscopy. Cereal Chem 88:87–94

    Article  CAS  Google Scholar 

  • Pérez S, Bertoft E (2010) The molecular structures of starch components and their contribution to the architecture of starch granules: a comprehensive review. Starch 62:389–420

    Article  Google Scholar 

  • Putseys JA, Lamberts L, Delcour JA (2010) Amylose-inclusion complexes: formation, identity and physico-chemical properties. J Cereal Sci 51:238–247

    Article  CAS  Google Scholar 

  • Ridout MJ, Gunning AP, Parker ML, Wilson RH, Morris VJ (2002) Using AFM to image the internal structure of starch granules. Carbohydr Polym 50:123–132

    Article  CAS  Google Scholar 

  • Rosicka-Kaczmarek J, Makowski B, Nebesny E et al (2016) Composition and thermodynamic properties of starches from facultative wheat varieties. Food Hydrocoll 54:66–76

    Article  CAS  Google Scholar 

  • Schofield JD, Greenwell P (1987) Wheat starch granule proteins and their technological significance. Elsevier, Amsterdam

    Google Scholar 

  • Sun L, Xu Z, Song L, Ma M, Zhang C, Chen X, Xu X, Sui Z, Corke H (2021) Removal of starch granule associated proteins alters the physicochemical properties of annealed rice starches. Int J Biol Macromol 185:412–418

    Article  CAS  PubMed  Google Scholar 

  • Tang HJ, Mitsunaga TH, Kawamura Y (2006) Molecular arrangement in blocklets and starch granule architecture. Carbohydr Polym 63:555–560

    Article  CAS  Google Scholar 

  • Tao H, Wang P, Wu F, Jin Z, Xu X (2016) Particle size distribution of wheat starch granules in relation to baking properties of frozen dough. Carbohydr Polym 137:147–153

    Article  CAS  PubMed  Google Scholar 

  • Tester RF, South JB, Morrison WR, Ellis RP (1991) The effects of ambient temperature during the grain-filling period on the composition and properties of starch from four barley genotypes. J Cereal Sci 13:113–127

    Article  CAS  Google Scholar 

  • Tester RF, Yousuf R, Karkalas J, Kettlitz B, Roper H (2008) Properties of protease-treated maize starches. Food Chem 109:257–263

    Article  CAS  PubMed  Google Scholar 

  • Vasanthan T, Hoover R (1992) Effect of defatting on starch structure and physicochemical properties. Food Chem 45:337–347

    Article  CAS  Google Scholar 

  • Whistler RL, Paschall EF (2009) Starch: chemistry and technology. Elsevier, Amsterdam

    Google Scholar 

  • Xu Z, Song L, Ming S, Zhang C, Li Z, Wu Y, Sui Z, Corke H (2022) Removal of starch granule associated proteins affects annealing of normal and waxy maize starches. Food Hydrocoll 131:107695

    Article  CAS  Google Scholar 

  • Yao TM, Wen YD, Xu ZK, Ma MT, Li P, Brennan C, Sui ZQ, Corke H (2020) Octenylsuccinylation differentially modifies the physicochemical properties and digestibility of small granule starches. Int J Biol Macromol 144:705–714

    Article  CAS  PubMed  Google Scholar 

  • Yoon JW, Jung JY, Chung HJ, Kim MR, Kim CW, Lim ST (2010) Identification of botanical origin of starches by SDS-PAGE analysis of starch granule-associated proteins. J Cereal Sci 52:321–326

    Article  CAS  Google Scholar 

  • Zhang Y, Guo Q, Feng N, Wang JR, Wang SJ, He ZH (2016) Characterization of A- and B-type starch granules in Chinese wheat cultivars. J Integr Agric 15:2203–2214

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhongquan Sui .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ma, M., Bordiga, M., Sui, Z. (2023). Granular Structure of Starch. In: Sui, Z., Kong, X. (eds) Physical Modifications of Starch. Springer, Singapore. https://doi.org/10.1007/978-981-99-5390-5_2

Download citation

Publish with us

Policies and ethics