Skip to main content

Fruit Trees Genetic Resources in Tunisia: Biodiversity, Challenges, and Adapted Strategies for Conservation and Improvement

  • Chapter
  • First Online:
Sustainable Utilization and Conservation of Plant Genetic Diversity

Part of the book series: Sustainable Development and Biodiversity ((SDEB,volume 35))

  • 60 Accesses

Abstract

In Tunisia, arboriculture occupies a surface of 2.155 million ha. The country is characterized by a rich genetic heritage of fruit trees. Nevertheless, the local Tunisian accessions faced several threats such as underutilization, spread of improved introduced materials, monoculture, climate conditions, and intensive urbanization. These problems have resulted in a rapid replacement and a dramatic loss of local Tunisian accessions. Through awareness of the problems threatening Tunisian genetic resources as a heritage, there have been concerted efforts on the part of the government, scientific community, and farmers to cope with the problem. Two methods have been established for the conservation of Tunisian arboriculture genetic resources: “in situ” and “ex situ.” These collections can be useful for modern breeding. This chapter presents a review of the genetic diversity of main fruit trees in Tunisia, the threats they face, and the policies adapted toward conservation and improvement.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    A Ramsar site is a wetland site designated to be of international importance under the Ramsar Convention (1971) by the UNESCO.

References

  • Abdallah D, Baraket G, Perez V, Ben Mustapha S, Salhi Hannachi A, Hormaza I (2019) Analysis of self-incompatibility and genetic diversity in diploid and hexaploid plum genotypes. Front Plant Sci 10:3389

    Article  Google Scholar 

  • Abdallah D, Baraket G, Perez V, Salhi Hannachi A, Hormaza JI (2020) Self-compatibility in peach [ Prunus persica (L.) Batsch]: patterns of diversity surrounding the S-locus and analysis of SFB alleles. Hortic Res 10:1038

    Google Scholar 

  • Albergamo A, Potortí AG, Di Bella G, Amor NB, Lo Vecchio G, Nava V, Rando R, Ben Mansour H, Lo Turco V (2022) Chemical characterization of different products from the Tunisian Opuntia ficus-indica (L.). Mill Foods 11:155

    Article  CAS  PubMed  Google Scholar 

  • Aouadi M, Guenni K, Abdallah D, Louati M, Salhi-Hannachi A (2019) Application of conserved DNA-derived polymorphism markers (CDDP) to assess the genetic diversity in Tunisian pistachio [Pistacia vera L.; Anacardiaceae]. Physiol Mol Biol Plants 25(5):1211–1223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baraket G, Chatti K, Saddoud O, Mars M, Marrakchi M, Trifi M, Salhi-Hannachi A (2009) Genetic analysis of Tunisian fig (Ficus carica L.) cultivars using amplified fragment length polymorphism (AFLP) markers. Sci Hortic 120:487–492

    Article  CAS  Google Scholar 

  • Baraket G, Ben Abdelkarim A, Chatti K, Saddoud O, Mars M, Trifi M, Salhihannachi A (2010) Molecular polymorphism of cytoplasmic DNA in Ficus carica: insights from non-coding regions of chloroplast DNA. Sci Hortic 125:512–517

    Article  CAS  Google Scholar 

  • Baraket G, Abdelkarim AB, Salhi-Hannachi A (2015) tRNALeu intron (UAA) of Ficus carica L.: genetic diversity and evolutionary patterns. Genet Mol Res 14(2):3817–3832

    Article  CAS  PubMed  Google Scholar 

  • Baraket G, Abdelkrim AB, Haffar S, Salhi-Hannachi A (2017) Intraspecific differentiation of Tunisian Ficus carica L. based on in silico atpB-rbcl PCR-RFLP fingerprinting. Acta Hortic 1173:63–68

    Article  Google Scholar 

  • Baraket G, Oueslati A, Mahjbi A, Aounallah A, Salhi-Hannachi A (2019a) Phylogenetic patterns and molecular evolution among ‘true citrus fruit trees’ group (Rutaceae family and Aurantioideae subfamily). Sci Hortic 253:87–98

    Article  Google Scholar 

  • Baraket G, Abdallah D, Ben Mustapha S, Salhi-Hannachi A (2019b) Combination of simple sequence repeat, S-locus polymorphism and morphology to draw a taxonomic key for Tunisian plum species (Prunus spp.). Biochem Genet 57:673. https://doi.org/10.1007/s10528-019-09922-4

    Article  CAS  PubMed  Google Scholar 

  • Baraket G, Abdallah D, Boukhalfa Y, Ben Mustapha S, Salhi-Hannachi A (2021) Analysis of genetic diversity and water-stress tolerance in Tunisian plums [Prunus spp.; Rosacea]. Sci Hortic 285:110141. https://doi.org/10.1016/j.scienta.2021.110141

    Article  CAS  Google Scholar 

  • Ben Abdallah F (1999) Les vignes antichtones: Caractérisation, régénération et dépistage in vitro. Thèse de doctorat Sc. Biol. Faculté des Sciences de Tunis, 200p

    Google Scholar 

  • Ben Abdallah F, Chibani F, Fnayou A, Ghorbel A, Boursiquot JM (1998) Caractérisation biochimique des variétés tunisiennes de vigne. J Int Sci Vigne Vin 32:17–25

    CAS  Google Scholar 

  • Ben Abdallah H, Laajimi A, Guesmi F, Triki T, Ferchichi A, Hormaza JI, Larranaga N (2020) Genetic diversity of endangered date palm (Phoenix dactylifera L.) in the oases of Nefzaoua, Tunisia, using SSR markers. Fruits 75(2):84–91

    Article  Google Scholar 

  • Ben Ayed R, Rebai A (2019) Tunisian table olive oil traceability and quality using SNP genotyping and bioinformatics tools. Biomed Res Int 9:8291341

    Google Scholar 

  • Ben SA, Ghorbel A (2000) Lavigne de Kerkenah Echos de Kerkenah 6:11–13

    Google Scholar 

  • Ben Mustapha S, Ben Tamarzizt H, Baraket G, Abdallah D, Salhi-Hannachi A (2015) Genetic diversity and differentiation in Prunus species (Rosaceae) using chloroplast and mitochondrial DNA CAPS markers. Genet Mol Res 14:4177. https://doi.org/10.4238/2015.April.27.33

    Article  CAS  PubMed  Google Scholar 

  • Ben Tamarzizt H, Walker D, Ben Mustapha S, Abdallah D, Baraket G, Salhi Hannachi A, Zehdi S (2015) DNA variation and polymorphism in Tunisian plum species (Prunus spp.): contribution of flow cytometry and molecular markers. Genet Mol Res 14(4):18034–18046. https://doi.org/10.4238/2015.December.22.30

    Article  CAS  PubMed  Google Scholar 

  • Bendhifi M, Baraket G, Zourguib L, Souid S, Salhi-Hannachi A (2013) Assessment of genetic diversity of Tunisian Barbary fig (Opuntia ficus-indica) cultivars by RAPD markers and morphological traits. Sci Hortic 158:1–7

    Article  CAS  Google Scholar 

  • Bendhifi M, Baraket G, Zourgui L, Souid S, Trifi M (2015) Genetic diversity and phylogenetic relationships among Tunisian cactus species (Opuntia spp.) assessed by random amplified microsatellite polymorphism markers (RAMPOs). Genet Mol Res 14(1):1423–1433

    Article  Google Scholar 

  • Bettaïed V (2021) The prickly pear fruit the secrets of a magical fruit. Editions du patrimoine Maghreb Méditerranée (EPMM)

    Google Scholar 

  • Brini W, Mars M, Hormaza I (2008) Genetic diversity in local Tunisian pears (Pyrus communis L.) studied with SSR markers. Sci Hortic 115:337–341

    Article  CAS  Google Scholar 

  • Byrne P, Richards C, Volk GM (2020) From wild species to landraces and cultivars. In: Volk GM, Byrne P (eds) Crop wild relatives and their use in plant breeding. Colorado State University, Fort Collins

    Google Scholar 

  • Carraut A (1986) Les portes greffes du poirier: Perspectives nouvelles pour la Tunisie. Agron Hortic 1:7–14

    Google Scholar 

  • Chouk G, Manel E, Chaabouni AC, Elbeaino T, Digiaro M, Mahfoudhi N (2021) Pistacia vera L. hosts pistachio ampelovirus A in Tunisia. J Plant Pathol 103:1335

    Article  Google Scholar 

  • Choulak S, Rhouma-Chatti S, Marzouk Z, Said K, Chatti N, Chatti K (2015) Chloroplast DNA analysis of Tunisian pistachio (Pistacia vera L.): sequence variations of the intron trnL (UAA). Sci Hortic 191:57–64

    Article  Google Scholar 

  • Cirilli M et al (2020) The multisite PeachRefPop collection: a true cultural heritage and international scientific tool for fruit trees. Plant Physiol 184:632–646

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cuénod A (1954) Flore de la Tunisie: I. Cryptogames vasculaires, Gynospermes et monocotyledones. SEFAN, Tunis

    Google Scholar 

  • DGPA: Statistiques Agricoles (2016) [Agricultural Statistics 2016]; Direction Générale de la Production Agricole. Ministère de l’Agriculture, Tunis

    Google Scholar 

  • DGPA: Statistiques Agricoles (2019) [Agricultural Statistics 2019]; Direction Générale de la Production Agricole. Ministère de l’Agriculture, Tunis

    Google Scholar 

  • Doebley J (1989) Isozymic evidence and the evolution of crop plants. In: Soltis D, Soltis P (eds) Isozymes in plant biology. Dioscorides Press, Portland, pp 165–191

    Chapter  Google Scholar 

  • Doebley J (2004) The genetics of maize evolution. Annu Rev Genet 38:37–59

    Article  CAS  PubMed  Google Scholar 

  • Driss A (1966) Trésors du Musée National du Bardo. Soc. Tun. Diff., p 114

    Google Scholar 

  • El Hani A, Louati M, Ben Salem H, Salhi-Hannachi A, Baraket G (2019) Morphologic variability of prickly pear cultivars (Opuntia spp.) established in ex-situ collection in Tunisia. Sci Hortic 248:163–175

    Article  Google Scholar 

  • El Mokni R, Barone G, Maxted N, Kell S, Domina G (2022) A prioritised inventory of crop wild relatives and wild harvested plants of Tunisia. Genet Resour Crop Evol 69:1787–1816

    Article  Google Scholar 

  • Ennaifer M (1973) La civilisation tunisienne à travers la mosaique. Soc. Tun. Diff., p 115

    Google Scholar 

  • Evreinoff VA (1949) Le grenadier. Fruits d’outre-Mer 4(5):161–170

    Google Scholar 

  • FAOSTAT (2019) Food and Agriculture Organization of the United Nations

    Google Scholar 

  • FAOSTAT (2020) Document d’orientation: Impact de la crise COVID-19 sur l’agriculture et la sécurité alimentaire en Tunisie: Défis et options de réponses. Food and Agriculture Organisation of the United Nations, Rome

    Google Scholar 

  • FAOSTAT (2021) Food and agriculture organization of the united nations. Italy, Rome

    Google Scholar 

  • Ferchichi W (2013) Evaluation du cadre juridique et institutionnel relatif à l’écotourisme et IUCN-Med. Aux aires protégées enTunisie

    Google Scholar 

  • Forrester R (2020) The domestication of plants and animals: the history of agriculture and pastoralism. In: History of science and technology, 3rd edn

    Google Scholar 

  • Fuller DQ, Stevens CJ (2019) Between domestication and civilization: the role of agriculture and arboriculture in the emergence of the first urban societies. Veg Hist Archaeobotany 28:263–282

    Article  Google Scholar 

  • Gaaliche B, Saddoud O, Mars M (2012) Morphological and pomological diversity of fig (Ficus carica L.) cultivars in northwest of Tunisia. ISRN Agron 2012:326461

    Google Scholar 

  • Gaaliche B, Chehimi S, Dardouri S, Hajlaoui MR (2018) Health status of the pear tree following the establishment of Fire blight in Northern Tunisia. Int J Fruit Science 18(1):85–98

    Article  Google Scholar 

  • Ghaffari S, Ferchichi A (2011) Characterization of Tunisian grapevine (Vitis vinifera L.) cultivars using leaves morphological traits and mineral composition. Roman. Biotechnol Lett 16:5

    Google Scholar 

  • Gounot M (1958) Contribution à l’étude des groupements végétaux messicoles et rudéraux en Tunisie. Ann. Du Serv. Bota., De Tunisie, p 31

    Google Scholar 

  • Gouta H, Ksia E, Ayach MM, Martínez-Góme P (2019) Agronomical evaluation of local Tunisian almond cultivars and their breeding prospects. Eur J Hortic Sci 84(2):73–84

    Article  Google Scholar 

  • Gribaa A (2008) Caractérisation climatique et biochimique de quelques cépages de vigne du Sud Tunisien. Mastère, Faculté des Sciences de Tunis, 80p

    Google Scholar 

  • Guenni K, Aouadi M, Chatti K, Salhi-Hannachi A (2016) Analysis of genetic diversity of Tunisian pistachio (Pistachio vera L.) using sequence-related amplified polymorphism (SRAP) markers. Genet Mol Res 15(4). https://doi.org/10.4238/gmr15048760

  • Hammadi H, Jemni M, Benabderrahim MA, Mrabet A, Touil S, Othmani A, Ben Salah M (2015) Chapter 6: date palm status and perspective in Tunisia. In: Al-Khayri JM et al (eds) Date palm genetic resources and utilization, Africa and the Americas, vol 1. Springer Science + Business Media, Dordrecht, p 193. https://doi.org/10.1007/978-94-017-9694-1_61

    Chapter  Google Scholar 

  • Hodgson RW (1931) La culture fruitière en Tunisie, son état actuel, ses Possibilités et son amélioration. Rapport de mission détudes fruitières en Tunisie, Soc. Anon. del’imprimerie Rapide de Tunis

    Google Scholar 

  • Jemaà M (2019) Où se trouve le plus vieil olivier du monde? https://www.leaders.com.tn/news/2019, https://www.leaders.com.tn/

  • Knaepen H (2021) Climate risks in Tunisia. Challenges to adaptation in the agri-food system. ECDPM

    Book  Google Scholar 

  • Lachkar A, Amari K, Chouchen N, Marz U, Mars M (2021) Identification of promising apricot cultivars for fruit drying in Tunisia. J Mater Environ Sci 12(1):161–168

    CAS  Google Scholar 

  • Maatallah S, Guizani M, Elloumi O, Ghrab M (2022) Phenological and biochemical characteristics of almond cultivars in arid climate of Central Tunisia. Environ Sci Proc 16:7

    Google Scholar 

  • Mahjbi A, Baraket G, Oueslati A, Salhi-Hannachi A (2015) Start codon targeted (SCoT) markers provide new insights into the genetic diversity analysis and characterization of Tunisian citrus species. Biochem Syst Ecol 61:390–398

    Article  CAS  Google Scholar 

  • Mahjbi A, Oueslati A, Baraket G, Salhi-Hannachi A, Zehdi Azouzi S (2016) Assessment of genetic diversity of Tunisian orange, Citrus sinensis (L.) Osbeck using microsatellite (SSR) markers. Genet Mol Res 15(2):15026564

    Article  Google Scholar 

  • Marone D, Russo MA, Mores A, Ficco DBM, Laidò G, Mastrangelo AM, Borrelli GM (2021) Importance of landraces in cereal breeding for stress tolerance. Plants 10:1267

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mekni M, Kharroubi W, Cheraief I, Hammami M (2019) Pomological, organoleptic and biochemical characterizations of Tunisian pomegranate fruits Punica granatum L. Am J Plant Sci 10:1181–1195

    Article  CAS  Google Scholar 

  • Meldrum G, Padulosi S, Lochetti G, Robitaille R, Diulgheroff S (2018) Issues and prospects for the sustainable use and conservation of cultivated vegetable diversity for more nutrition-sensitive agriculture. Agriculture 8:112

    Article  Google Scholar 

  • Minangoin N (1931) Monographie des variétés de figues tunisiennes. In: Congrés d’Agronomie du Cinquantenaire, vol 1. Baconnier, Alger, pp 336–364

    Google Scholar 

  • Msadek J, Tarhouni M (2021) Biodiversity assessment and conservation of threatened plant species belonging to the unique steppe with trees in Tunisian drylands. In: International grassland congress proceedings. https://uknowledge.uky.edu/igc/24/1-2/39

  • Nabli MA (1989) Essai de synthèse sur la végétation et la phyto-écolo Tunisiennes. Faculté des sciences de Tunis, Tunis

    Google Scholar 

  • Nabli M (2011) La flore de la Tunisie, Mise à jour

    Google Scholar 

  • Oueslati A, Ollitrault F, Baraket G, Salhi-Hannachi A, Navarro L, Ollitrault P (2016a) Towards a molecular taxonomic key of the Aurantioideae subfamily using chloroplastic SNP diagnostic markers of the main clades genotyped by competitive allele-specific PCR. BMC Genet 17:118

    Article  PubMed  PubMed Central  Google Scholar 

  • Oueslati A, Baraket G, Mahjbi A, Maamouri A, Salhi-Hannachi A (2016b) Cytoplasmic diversity, phylogenetic relationships and molecular evolution of Tunisian citrus species as inferred from mutational events and pseudogene of chloroplast trnL-trnF spacer. Biochem Syst Ecol 67:65–73

    Article  CAS  Google Scholar 

  • Oueslati A, Salhi-Hannachi A, Luro F, Vignes H, Mournet P et al (2017) Genotyping by sequencing reveals the inetrspecific C. maxima/C. reticulate admixture along the genomes of modern citrus varieties of mandarins, tangors, tangelos and grapefruits. PLoS One 12(10):e0185618

    Article  PubMed  PubMed Central  Google Scholar 

  • Ouni R, Zborowska A, Sehic J, Choulak S, Hormaza JI, Garkava-Gustavsson L, Mars M (2020) Genetic diversity and structure of Tunisian local pear germplasm as revealed by SSR markers. Hortic Plant J 6(2):61–70

    Article  Google Scholar 

  • Pottier-Alapetite G (1979) Flore de la Tunisie: Angiospermes-Dcotylédones, Apétales-Dialypétales. Publications scientifiques tunisiennes. Programmes flore et végétation tunisiennes

    Google Scholar 

  • Pottier-Alapetite G (1981) Flore de la Tunisie: Angiospermes-Dcotylédones, Gamopétales. Publications scientifiques tunisiennes. Programmes flore et végétation tunisiennes

    Google Scholar 

  • Ramsar Convention (1971) Convention on wetlands. Ramsar, Iran, 1971

    Google Scholar 

  • Rhouma A (1994) Le palmier dattier en Tunisie, Le patrimoine génétique Edit Arabesque, vol I, 251p

    Google Scholar 

  • Rhouma A (2005) Le palmier dattier en Tunisie, Le patrimoine génétique Edit, vol 2. IPGRI, 255p

    Google Scholar 

  • Rhouma Chatti S, Baraket G, Dakhlaoui-Dkhil S, Zehdi-Azouzi S, Trifi M (2011) Molecular research on the genetic diversity of Tunisian date palm (Phoenix dactylifera L.) using the RAMPO and AFLP methods. Afr J Biotechnol 10(51):10352–10365

    Article  Google Scholar 

  • Saddoud Debbabi O, Montemurro C, Ben Maachia S, Ben Amar F, Fanelli F, Gadaleta S, El Riachy M, Chehade A, Siblini M, Boucheffa S et al (2020) A hot-spot of olive biodiversity in the Tunisian oasis of Degache. Diversity 12:358

    Article  Google Scholar 

  • Saddoud DO, Amar FB, Rahmani SM, Taranto F, Montemurro C, Miazzi MM (2022) The status of genetic resources and olive breeding in Tunisia. Plants 11:1759

    Article  Google Scholar 

  • Sakka H et al (2004) Genetic polymorphism of plastid DNA in Tunisian date palm germ plasma detected with PCR. Genet Res Crop Evol 51(5):479–487

    Article  Google Scholar 

  • Salhi-Hannachi A et al (2004) Inter simple sequence repeat fingerprints to assess genetic diversity in Tunisian fig germplasm. Genet Res Crop Evol 51:269–275

    Article  CAS  Google Scholar 

  • Santoro A, Venturi M, Ben Maachia S, Benyahia F, Corrieri F, Piras F, Agnoletti M (2020) Agroforestry heritage systems as agrobiodiversity hotspots. The case of the mountain oases of Tunisia. Sustainability 12:4054

    Article  Google Scholar 

  • Schaal B (2019) Plants and people: our shared history and future. Plants People Planet 1:14–19

    Article  Google Scholar 

  • Snoussi H, Harbi Ben Slimene M et al (2004) Genetic relationships among cultivated and wild grapevine accessions from Tunisia. Genome 47(6):1211–1219

    Article  CAS  PubMed  Google Scholar 

  • Snoussi H, Duval MF, Garcia-Lor A, Belfalah Z, Fro-elicher Y, Risterucci AM et al (2012) Assessment of the genetic diversity of the Tunisian citrus root-stock germplasm. BMC Genet 13:16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Souissi A (2001) Tunisia: environment and sustainable development issues and policies. Mediterranean country profiles. Sophia Antipolis, Tunisia, 69pp

    Google Scholar 

  • Stephenson PJ, Stengel C (2020) An inventory of biodiversity data sources for conservation monitoring. PLoS One 15(12):e0242923

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tekaya M et al (2022) Biochemical characterization of olive oil samples obtained from fruit mixtures and from oil blends of four cultivars grown in Central Tunisia. OCL 29:5

    Article  CAS  Google Scholar 

  • Toumi I, Zarrouk O, Ghrab M, Nagaz K (2022) Improving peach fruit quality traits using deficit irrigation strategies in southern Tunisia arid area. Plants 11:1656

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Trad M, Taoueb SM (2021) A critical review of pear genetic resources in Tunisia after the fire blight outbreak: risk assessment and geographic limits. Euro Med J Environ Integr 6:50

    Article  Google Scholar 

  • Trad M et al (2015) Apple breeding in Tunisia and the actual climatic context: quality assessment and crop adaptation. IJPSE 1:131–137

    Google Scholar 

  • Trigui A et al (2002) Olivier de Tunisie: Catalogue des variétés autochtones et types locaux, vol I, 159p

    Google Scholar 

  • UNESCO (2023). https://whc.unesco.org/en/statesparties/tn

  • UNFCCC (2001) Intended nationally determined contribution. United nations framework convention on climate change, Tunis, 2001

    Google Scholar 

  • UNFCCC (2014) Second intended nationally determined contribution. United nations framework convention on climate change, Tunis, 2014

    Google Scholar 

  • UNFCCC (2015) Intended nationally determined contribution. UNFCCC, Tunis

    Google Scholar 

  • USAID (2018) Climate risk profile. United States Agency for International Development, Tunis

    Google Scholar 

  • Valdeyron G, Crossa-Raynaud P (1950) Les fruits de Tunisie. Ann Serv Bot Agro Tun 23:1–124

    Google Scholar 

  • Verner D, Treguer D, Redwood J, Christensen J, McDonnell R, Elbert C, Konishi Y (2018) Climate variability, drought, and drought management in Tunisia’s agricultural sector. World Bank Group

    Book  Google Scholar 

  • You H, Jin H, Khaldi A, Kwak M, Lee T, Khaine I, Jang J, Lee H, Kim I, Ahn T, Song J, Song Y, Khorchani A, Stiti B, Woo S (2016) Plant diversity in different bioclimatic zones in Tunisia. J Asia Pacific Biodivers 9:56–62

    Article  Google Scholar 

  • Zoghlami NA, Mliki A, Ghorbel A (2001) Evaluation of genetic diversity among Tunisian grapevines by RAPD markers. Vitis 40:31–37

    CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank all those who have contributed to this work. We are grateful to scientists, farmers, and collectors who gave, generously and with enthusiasm, important information to write this report.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Abdallah, D., Mustapha, S.B., Salhi-Hannachi, A., Baraket, G. (2024). Fruit Trees Genetic Resources in Tunisia: Biodiversity, Challenges, and Adapted Strategies for Conservation and Improvement. In: Al-Khayri, J.M., Jain, S.M., Penna, S. (eds) Sustainable Utilization and Conservation of Plant Genetic Diversity. Sustainable Development and Biodiversity, vol 35. Springer, Singapore. https://doi.org/10.1007/978-981-99-5245-8_30

Download citation

Publish with us

Policies and ethics