Skip to main content

Topological Order and Hyperorder in Oxide Glasses and Liquids

  • Chapter
  • First Online:
Hyperordered Structures in Materials

Part of the book series: The Materials Research Society Series ((MRSS))

  • 183 Accesses

Abstract

The advent of quantum beam sources, which can generate high-flux high-energy neutrons and X-rays, and the development of advanced instruments make it feasible to probe atomic arrangement in disordered materials with high real space resolution [15]. A combination of quantum-beam (X-ray and neutron) diffraction (see Chap. 4), theoretical simulations such as density functional theory (DFT) (see Chap. 8) and molecular dynamics (MD) (see Chap. 9), and data-driven structural modeling such as reverse Monte Carlo (RMC, see Chap. 10) modeling [68] enables us to study topological order in disordered materials. In this chapter, recent research topics on probing the topological order in oxide glasses (see Chap. 15) and liquids are introduced. Moreover, the application of topological analyses (see Chap. 11) to uncover the hidden topological ordering in the pair correlation is addressed. Finally, we introduce hyperordered glasses and liquids that have been recently discovered to discuss the relationships among diffraction peaks, topological order, and hyperorder in disordered materials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kohara S, Salmon PS (2016) Adv Phys: X 1:640

    CAS  Google Scholar 

  2. Kohara S, Akola J (2021) In World scientific series in nanoscience and nanotechnology advanced characterization of nanostructured materials, Ed by Sinha SK, Sanyal MK, Loong CK (World Scientific Co. Pte. Ltd., Singapore), pp 247−305

    Google Scholar 

  3. Ohara K, Onodera Y, Murakami M, Kohara S (2021) J Phys: Condens Matter 33:383001

    CAS  Google Scholar 

  4. Kohara S (2022) J Ceram Soc Jpn 130:531

    Article  CAS  Google Scholar 

  5. Benmore CJ (2023) Comprehensive inorganic chemistry III (Third Edition)” ed by Reedijk J, Poeppelmeier KR (Elsevier, Amsterdam), pp 384−424

    Google Scholar 

  6. McGreevy RL, Pusztai L (1988) Molec Simul 1:359

    Article  Google Scholar 

  7. McGreevy RL (2001) J Phys: Condens Matter 13:R877

    CAS  Google Scholar 

  8. Kohara S, Pusztai L (2022) Atomistic simulations of glasses: fundamentals and applications, ed by Du J, Cormack AN (Wiley-American Ceramic Society, Hoboken), pp 60−88

    Google Scholar 

  9. Gupta PK (1993) J Am Ceram Soc 76:1088

    Article  CAS  Google Scholar 

  10. Hashimoto H, Onodera Y, Tahara S, Kohara S, Yazawa K, Segawa H, Murakami M, Ohara K (2022) Sci Rep 12:516

    Article  CAS  Google Scholar 

  11. Onodera Y, Kohara S, Tahara S, Masuno A, Inoue H, Shiga M, Hirata A, Tsuchiya K, Hiraoka Y, Obayashi I, Ohara K, Mizuno A, Sakata O (2019) J Ceram Soc Jpn 127:853

    Article  CAS  Google Scholar 

  12. Onodera Y, Kohara S, Salmon PS, Hirata A, Nishiyama N, Kitani S, Zeidler A, Shiga M, Masuno A, Inoue H, Tahara S, Polidori A, Fischer HE, Mori T, Kojima S, Kawaji H, Kolesnikov AI, Stone MB, Tucker MG, McDonnell MT, Hannon AC, Hiraoka Y, Obayashi I, Nakamura T, Akola J, Fujii Y, Ohara K, Taniguchi T, Sakata O (2020) NPG Asia Mater. 12:85

    Article  CAS  Google Scholar 

  13. Sokolov AP, Kisliuk A, Soltwisch M, Quitmann D (1992) Phys Rev Lett 69:1540

    Article  CAS  Google Scholar 

  14. Sugai S, Onodera A (1996) Phys Rev Lett 77:4210

    Article  CAS  Google Scholar 

  15. Inamura Y, Arai M, Nakamura M, Otomo T, Kitamura N, Bennington SM, Hannon AC, Buchenau U, Non-Cryst J (2001) Solids 293–295:389–393

    Google Scholar 

  16. Heimbach I, Rhiem F, Beule F, Knodt D, Heinen J, Jones RO (2017) J Comput Chem 38:389

    Article  CAS  Google Scholar 

  17. Wille TF, Rycroft CH, Kazi M, Meza JC, Haranczyk M (2012) Microporous Mesoporous Mater 149:134

    Article  Google Scholar 

  18. Zeidler A, Wezka K, Rowlands RF, Whittaker DAJ, Salmon PS, Polidori A, Drewitt JWE, Klotz S, Fischer HE, Wilding MC, Bull CL, Tucker MG, Wilson M (2014) Phys Rev Lett 113:135501

    Article  Google Scholar 

  19. Salmon PS, Zeidler A (2019) J Stat Mech Theory E 2019:114006

    Article  Google Scholar 

  20. Sun K-H (1947) J Am Ceram Soc 30:277

    Article  CAS  Google Scholar 

  21. Price DL (2010) In High-temperature levitated materials (Cambridge University Press, Cambridge), pp 2−19

    Google Scholar 

  22. Skinner LB, Barnes AC, Salmon PS, Hennet L, Fischer HE, Benmore CJ, Kohara S, Weber JKR, Bytchkov A, Wilding MC, Parise JB, Farmer TO, Pozdnyakova I, Tumber SK, Ohara K (2013) Phys Rev B 87:024201

    Article  Google Scholar 

  23. Skinner LB, Benmore CJ, Weber JKR, Du J, Neuefeind J, Tumber SK, Parise JB (2014) Phys Rev Lett 112:157801

    Article  CAS  Google Scholar 

  24. Skinner LB, Benmore CJ, Weber JKR, Williamson MA, Tamalonis A, Hebden A, Wiencek T, Alderman OLG, Guthrie M, Leibowitz L, Parise JB (2014) Science 346:984987

    Article  Google Scholar 

  25. Alderman OLG, Skinner LB, Benmore CJ, Tamalonis A, Weber JKR (2014) Phys Rev B 90:094204

    Article  CAS  Google Scholar 

  26. Alderman OLG, Ferlat G, Baroni A, Salanne M, Micoulaut M, Benmore CJ, Lin A, Tamalonis A, Weber JKR (2015) J Phys: Condens Matter 27:455104

    CAS  Google Scholar 

  27. Pavlik A III, Ushakov SV, Navrotsky A, Benmore CJ, Weber JKR (2017) J Nucl Mater 495:385

    Article  CAS  Google Scholar 

  28. Koyama C, Kohara S, Onodera Y, Småbråten DR, Selbach SM, Akola J, Ishikawa T, Masuno A, Mizuno A, Okada JT, Watanabe Y, Nakata Y, Ohara K, Tamaru H, Oda H, Obayashi I, Hiraoka Y, Sakata O (2020) NPG Asia Mater. 12:43

    Article  CAS  Google Scholar 

  29. Kohara S, Akola J, Patrikeev L, Ropo M, Ohara K, Itou M, Fujiwara A, Yahiro J, Okada JT, Ishikawa T, Mizuno A, Masuno A, Watanabe Y, Usuki T (2014) Nat Commun 5:5892

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by a JSPS Grant-in-Aid for Transformative Research Areas (A) “Hyper-Ordered Structures Science”: Grants No. 20H05878 and No. 20H05881.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shinji Kohara .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 Materials Research Society, under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kohara, S. (2024). Topological Order and Hyperorder in Oxide Glasses and Liquids. In: Hayashi, K. (eds) Hyperordered Structures in Materials. The Materials Research Society Series. Springer, Singapore. https://doi.org/10.1007/978-981-99-5235-9_2

Download citation

Publish with us

Policies and ethics