Skip to main content

Metabolomics: A Pipeline for Biomarker Discovery in Genetic Diseases

  • Chapter
  • First Online:
Clinical Metabolomics Applications in Genetic Diseases

Abstract

Genetic disorders (GD) affect hundreds of millions of lives worldwide, leading to specific molecular perturbations in the metabolic profile within a certain biological matrix. Metabolomic studies use advanced technologies (nuclear magnetic resonance (NMR) and mass spectrometry (MS)) with bioinformatics to identify and quantify a set of small molecules (such as carbohydrates, nucleic acids, amino acids, and lipids) present in a biological system. As metabolites represent the downstream product of gene and protein activity, they most likely reflect the phenotype of an organism at a specific time. Metabolomic studies provide novel insights into the underlying disease pathophysiological mechanisms, evaluate the progress of the disease, and identify unique biomarkers for the prediction of disease and therapeutic outcomes. This chapter highlights the applications of metabolomic techniques for biomarker discovery in GD. It discusses the workflow followed, the methods used for sample analysis and data interpretation, and the major challenges and limitations in applying the metabolomic approach for biomarker discovery in GD. Moreover, the chapter provides an overview of the biomarkers identified in four GD: cystic fibrosis, Down syndrome, sickle cell anemia, and glycogen storage disorders, highlighting the promising role of metabolomics in clinical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

BALF:

Bronchoalveolar lavage fluid

CF:

Cystic fibrosis

CFTR:

Cystic fibrosis transmembrane conductance regulator

CID:

Collision-induced dissociation

DBS:

Dried blood spot

DDA:

Data-dependent acquisition

DIA:

Data-independent acquisition

EBC:

Exhaled breath condensate

GC:

Gas chromatography

GD:

Genetic disorders

GSDs:

Glycogen storage disorders

LOD:

Limit of detection

LOQ:

Limit of quantification

MS:

Mass spectrometry

NMR:

Nuclear magnetic resonance

OPLS-DA:

Orthogonal partial least squares-discriminant analysis

PCA:

Principal component analysis

PLS-DA:

Partial least squares-discriminant analysis

SCD:

Sickle cell disease

VIP:

Variable importance in projection

References

  1. Boycott KM, Hartley T, Biesecker LG, Gibbs RA, Innes AM, Riess O, et al. A diagnosis for all rare genetic diseases: the horizon and the next frontiers. Cell. 2019;177(1):32–7.

    Article  CAS  PubMed  Google Scholar 

  2. Jackson M, Marks L, May GHW, Wilson JB. The genetic basis of disease. Essays Biochem. 2018;62(5):643–723.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Ropers HH. New perspectives for the elucidation of genetic disorders. Am J Hum Genet. 2007;81(2):199–207.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Zhou B, Xiao JF, Tuli L, Ressom HW. LC-MS-based metabolomics. Mol BioSyst. 2012;8(2):470–81.

    Article  CAS  PubMed  Google Scholar 

  5. Rinschen MM, Ivanisevic J, Giera M, Siuzdak G. Identification of bioactive metabolites using activity metabolomics. Nat Rev Mol Cell Biol. 2019;20(6):353–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Tolstikov V, Moser AJ, Sarangarajan R, Narain NR, Kiebish MA. Current status of metabolomic biomarker discovery: impact of study design and demographic characteristics. Metabolites. 2020;10(6):224.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Zhang AH, Sun H, Wang XJ. Saliva metabolomics opens the door to biomarker discovery, disease diagnosis, and treatment. Appl Biochem Biotechnol. 2012;168(6):1718–27.

    Article  CAS  PubMed  Google Scholar 

  8. Dahabiyeh LA, Malkawi AK, Wang XH, Colak D, Mujamammi AH, Sabi EM, et al. Dexamethasone-induced perturbations in tissue metabolomics revealed by chemical isotope labeling LC-MS analysis. Metabolites. 2020;10(2):42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Dahabiyeh LA, Mahmoud NN, Al-Natour MA, Safo L, Kim DH, Khalil EA, et al. Phospholipid-gold nanorods induce energy crisis in MCF-7 cells: cytotoxicity evaluation using LC-MS-based metabolomics approach. Biomolecules. 2021;11(3):364.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Dahabiyeh LA, Mujammami M, Arafat T, Benabdelkamel H, Alfadda AA, Rahman AMA. A metabolic pattern in healthy subjects given a single dose of metformin: a metabolomics approach. Front Pharmacol. 2021;12:705932.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Aranibar N, Borys M, Mackin NA, Ly V, Abu-Absi N, Abu-Absi S, et al. NMR-based metabolomics of mammalian cell and tissue cultures. J Biomol NMR. 2011;49(3–4):195–206.

    Article  CAS  PubMed  Google Scholar 

  12. Ren JL, Zhang AH, Kong L, Wang XJ. Advances in mass spectrometry-based metabolomics for investigation of metabolites. RSC Adv. 2018;8(40):22335–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Pallares-Mendez R, Aguilar-Salinas CA, Cruz-Bautista I, del Bosque-Plata L. Metabolomics in diabetes, a review. Ann Med. 2016;48(1–2):89–102.

    Article  CAS  PubMed  Google Scholar 

  14. Razquin C, Toledo E, Clish CB, Ruiz-Canela M, Dennis C, Corella D, et al. Plasma lipidomic profiling and risk of type 2 diabetes in the PREDIMED trial. Diabetes Care. 2018;41(12):2617–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Chen ZH, Li ZH, Li HR, Jiang Y. Metabolomics: a promising diagnostic and therapeutic implement for breast cancer. Onco Targets Ther. 2019;12:6797–811.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Chen XL, Zhu Y, Jijiwa M, Nasu M, Ai JM, Dai SM, et al. Identification of plasma lipid species as promising diagnostic markers for prostate cancer. BMC Med Inform Decis Mak. 2020;20:223.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Liessi N, Pedemonte N, Armirotti A, Braccia C. Proteomics and metabolomics for cystic fibrosis research. Int J Mol Sci. 2020;21(15):5439.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Quezada H, Guzman-Ortiz AL, Diaz-Sanchez H, Valle-Rios R, Aguirre-Hernandez J. Omics-based biomarkers: current status and potential use in the clinic. Bol Med Hosp Infant Mex. 2017;74(3):219–26.

    PubMed  Google Scholar 

  19. Robinette SL, Holmes E, Nicholson JK, Dumas ME. Genetic determinants of metabolism in health and disease: from biochemical genetics to genome-wide associations. Genome Med. 2012;4:30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Goossens N, Nakagawa S, Sun XC, Hoshida Y. Cancer biomarker discovery and validation. Transl Cancer Res. 2015;4(3):256–69.

    CAS  PubMed  Google Scholar 

  21. Wishart DS. Metabolomics for investigating physiological and pathophysiological processes. Physiol Rev. 2019;99(4):1819–75.

    Article  CAS  PubMed  Google Scholar 

  22. Ilboudo Y, Garrett ME, Bartolucci P, Brugnara C, Clish CB, Hirschhorn JN, et al. Potential causal role of L-glutamine in sickle cell disease painful crises: a Mendelian randomization analysis. Blood Cells Mol Dis. 2021;86:102504.

    Article  PubMed  Google Scholar 

  23. Zhang YJ, Berka V, Song AR, Sun KQ, Wang W, Zhang WR, et al. Elevated sphingosine-1-phosphate promotes sickling and sickle cell disease progression. J Clin Investig. 2014;124(6):2750–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Alvarez JA, Chong EY, Walker DI, Chandler JD, Michalski ES, Grossmann RE, et al. Plasma metabolomics in adults with cystic fibrosis during a pulmonary exacerbation: a pilot randomized study of high-dose vitamin D-3 administration. Metabolism. 2017;70:31–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Wetmore DR, Joseloff E, Pilewski J, Lee DP, Lawton KA, Mitchell MW, et al. Metabolomic profiling reveals biochemical pathways and biomarkers associated with pathogenesis in cystic fibrosis cells. J Biol Chem. 2010;285(40):30516–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Joseloff E, Sha W, Bell SC, Wetmore DR, Lawton KA, Milburn MV, et al. Serum metabolomics indicate altered cellular energy metabolism in children with cystic fibrosis. Pediatr Pulmonol. 2014;49(5):463–72.

    Article  PubMed  Google Scholar 

  27. Al-Qahtani W, Jabar MA, Masood A, Jacob M, Nizami I, Dasouki M, et al. Dried blood spot-based metabolomic profiling in adults with cystic fibrosis. J Proteome Res. 2020;19(6):2346–57.

    Article  CAS  PubMed  Google Scholar 

  28. Macedo AN, Mathiaparanam S, Brick L, Keenan K, Gonska T, Pedder L, et al. The sweat metabolome of screen-positive cystic fibrosis infants: revealing mechanisms beyond impaired chloride transport. ACS Cent Sci. 2017;3(8):904–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Parfieniuk E, Pietrowska K, Samczuk P, Kretowski A, Ciborowski M, Zbucka-Kretowska M. Amniotic fluid metabolic fingerprinting indicated metabolites which may play a role in the pathogenesis of foetal Down syndrome - a preliminary report. Ginekol Pol. 2021;92(3):188–94.

    Article  PubMed  Google Scholar 

  30. Huang J, Mo JH, Zhao GL, Lin QY, Wei GH, Deng WN, et al. Application of the amniotic fluid metabolome to the study of fetal malformations, using Down syndrome as a specific model. Mol Med Rep. 2017;16(5):7405–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Farah BL, Sinha RA, Wu YJ, Singh BK, Lim A, Hirayama M, et al. Hepatic mitochondrial dysfunction is a feature of Glycogen Storage Disease Type Ia (GSDIa). Sci Rep. 2017;7:44408.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Hannibal L, Theimer J, Wingert V, Klotz K, Bierschenk I, Nitschke R, et al. Metabolic profiling in human fibroblasts enables subtype clustering in glycogen storage disease. Front Endocrinol. 2020;11:579981.

    Article  Google Scholar 

  33. Tang XH, Lin CC, Spasojevic I, Iversen ES, Chi JT, Marks JR. A joint analysis of metabolomics and genetics of breast cancer. Breast Cancer Res. 2014;16(4):415.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Long ZP, Zhou JD, Xie K, Wu Z, Yin HH, Daria V, et al. Metabolomic markers of colorectal tumor with different clinicopathological features. Front Oncol. 2020;10:981.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Yusof HM, Ab-Rahim S, Suddin LS, Saman MSA, Mazlan M. Metabolomics profiling on different stages of colorectal cancer: a systematic review. Malays J Med Sci. 2018;25(5):16–34.

    PubMed  PubMed Central  Google Scholar 

  36. Alvarez-Sanchez B, Priego-Capote F, de Castro MDL. Metabolomics analysis II. Preparation of biological samples prior to detection. Trends Analyt Chem. 2010;29(2):120–7.

    Article  CAS  Google Scholar 

  37. Vuckovic D. Current trends and challenges in sample preparation for global metabolomics using liquid chromatography-mass spectrometry. Anal Bioanal Chem. 2012;403(6):1523–48.

    Article  CAS  PubMed  Google Scholar 

  38. Pinu FR, Villas-Boas SG. Extracellular microbial metabolomics: the state of the art. Metabolites. 2017;7(3):43.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Brauer R, Leichtle AB, Fiedler GM, Thiery J, Ceglarek U. Preanalytical standardization of amino acid and acylcarnitine metabolite profiling in human blood using tandem mass spectrometry. Metabolomics. 2011;7(3):344–52.

    Article  CAS  Google Scholar 

  40. Mapstone M, Gross T, Macciardi F, Cheema A, Petersen M, Head E, et al. Metabolic correlates of prevalent mild cognitive impairment and Alzheimer’s disease in adults with Down syndrome. Alzheimers Dement (Amst). 2020;12(1):e12028. https://doi.org/10.1002/dad2.12028.

    Article  PubMed  Google Scholar 

  41. Muhlebach MS, Sha W, MacIntosh B, Kelley TJ, Muenzer J. Metabonomics reveals altered metabolites related to inflammation and energy utilization at recovery of cystic fibrosis lung exacerbation. Metabol Open. 2019;3:100010. https://doi.org/10.1016/j.metop.2019.100010.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Dahabiyeh LA. The discovery of protein biomarkers in pre-eclampsia: the promising role of mass spectrometry. Biomarkers. 2018;23(7):609–21.

    Article  CAS  PubMed  Google Scholar 

  43. Rahman AMA, Pawling J, Ryczko M, Caudy AA, Dennis JW. Targeted metabolomics in cultured cells and tissues by mass spectrometry: method development and validation. Anal Chim Acta. 2014;845:53–61.

    Article  PubMed  Google Scholar 

  44. Steuer AE, Brockbals L, Kraemer T. Metabolomic strategies in biomarker research-new approach for indirect identification of drug consumption and sample manipulation in clinical and forensic toxicology? Front Chem. 2019;7:319.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Wei R, Li GD, Seymour AB. High-throughput and multiplexed LC/MS/MRM method for targeted metabolomics. Anal Chem. 2010;82(13):5527–33.

    Article  CAS  PubMed  Google Scholar 

  46. Jacob M, Malkawi A, Albast N, Al Bougha S, Lopata A, Dasouki M, et al. A targeted metabolomics approach for clinical diagnosis of inborn errors of metabolism. Anal Chim Acta. 2018;1025:141–53.

    Article  CAS  PubMed  Google Scholar 

  47. Caracausi M, Ghini V, Locatelli C, Mericio M, Piovesan A, Antonaros F, et al. Plasma and urinary metabolomic profiles of Down syndrome correlate with alteration of mitochondrial metabolism. Sci Rep. 2018;8:2977.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Antonaros F, Ghini V, Pulina F, Ramacieri G, Cicchini E, Mannini E, et al. Plasma metabolome and cognitive skills in Down syndrome. Sci Rep. 2020;10(1):10491.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Elsherif L, Pathmasiri W, McRitchie S, Archer DR, Ataga KI. Plasma metabolomics analysis in sickle cell disease patients with albuminuria - an exploratory study. Br J Haematol. 2019;185(3):620–3.

    Article  PubMed  Google Scholar 

  50. Orozco JS, Hertz-Picciotto I, Abbeduto L, Slupsky CM. Metabolomics analysis of children with autism, idiopathic-developmental delays, and Down syndrome. Transl Psychiatry. 2019;9:243.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Sumner LW, Amberg A, Barrett D, Beale MH, Beger R, Daykin CA, et al. Proposed minimum reporting standards for chemical analysis. Metabolomics. 2007;3(3):211–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Sumner LW, Lei ZT, Nikolau BJ, Saito K, Roessner U, Trengove R. Proposed quantitative and alphanumeric metabolite identification metrics. Metabolomics. 2014;10(6):1047–9.

    Article  CAS  Google Scholar 

  53. Eriksson L, Andersson PL, Johansson E, Tysklind M. Megavariate analysis of environmental QSAR data. Part I - a basic framework founded on principal component analysis (PCA), partial least squares (PLS), and statistical molecular design (SMD). Mol Divers. 2006;10(2):169–86.

    Article  CAS  PubMed  Google Scholar 

  54. Yin PY, Wan DF, Zhao CX, Chen J, Zhao XJ, Wang WZ, et al. A metabonomic study of hepatitis B-induced liver cirrhosis and hepatocellular carcinoma by using RP-LC and HILIC coupled with mass spectrometry. Mol BioSyst. 2009;5(8):868–76.

    Article  CAS  PubMed  Google Scholar 

  55. Kind T, Tsugawa H, Cajka T, Ma Y, Lai ZJ, Mehta SS, et al. Identification of small molecules using accurate mass MS/MS search. Mass Spectrom Rev. 2018;37(4):513–32.

    Article  CAS  PubMed  Google Scholar 

  56. Ghanbari R, Sumner S. Using metabolomics to investigate biomarkers of drug addiction. Trends Mol Med. 2018;24(2):197–205.

    Article  CAS  PubMed  Google Scholar 

  57. Michalski A, Cox J, Mann M. More than 100,000 detectable peptide species elute in single shotgun proteomics runs but the majority is inaccessible to data-dependent LC-MS/MS. J Proteome Res. 2011;10(4):1785–93.

    Article  CAS  PubMed  Google Scholar 

  58. Boxler MI, Schneider TD, Kraemer T, Steuer AE. Analytical considerations for (un)-targeted metabolomic studies with special focus on forensic applications. Drug Test Anal. 2019;11(5):678–96.

    Article  CAS  PubMed  Google Scholar 

  59. Esther CR, Turkovic L, Rosenow T, Muhlebach MS, Boucher RC, Ranganathan S, et al. Metabolomic biomarkers predictive of early structural lung disease in cystic fibrosis. Eur Respir J. 2016;48(6):1612–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Darghouth D, Koehl B, Madalinski G, Heilier JF, Bovee P, Xu Y, et al. Pathophysiology of sickle cell disease is mirrored by the red blood cell metabolome. Blood. 2011;117(6):E57–66.

    Article  CAS  PubMed  Google Scholar 

  61. Adebiyi MG, Manalo JM, Xia Y. Metabolomic and molecular insights into sickle cell disease and innovative therapies. Blood Adv. 2019;3(8):1347–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Valdes A, Lucio-Cazana FJ, Castro-Puyana M, Garcia-Pastor C, Fiehn O, Marina ML. Comprehensive metabolomic study of the response of HK-2 cells to hyperglycemic hypoxic diabetic-like milieu. Sci Rep. 2021;11(1):5058.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Barupal DK, Zhang Y, Shen T, Fan SL, Roberts BS, Fitzgerald P, et al. A comprehensive plasma metabolomics dataset for a cohort of mouse knockouts within the International Mouse Phenotyping Consortium. Metabolites. 2019;9(5):101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Boja ES, Fehniger TE, Baker MS, Marko-Varga G, Rodriguez H. Analytical validation considerations of multiplex mass-spectrometry-based proteomic platforms for measuring protein biomarkers. J Proteome Res. 2014;13(12):5325–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Yao XD, Bajrami B, Shi Y. Ultrathroughput multiple reaction monitoring mass spectrometry. Anal Chem. 2010;82(3):794–7.

    Article  CAS  PubMed  Google Scholar 

  66. Masood A, Jacob M, Gu X, Abdel Jabar M, Benabdelkamel H, Nizami I, et al. Distinctive metabolic profiles between cystic fibrosis mutational subclasses and lung function. Metabolomics. 2021;17(1):4.

    Article  CAS  PubMed  Google Scholar 

  67. Zardini Buzatto A, Abdel Jabar M, Nizami I, Dasouki M, Li L, Abdel Rahman AM. Lipidome alterations induced by cystic fibrosis, CFTR mutation, and lung function. J Proteome Res. 2020;20(1):549–64.

    Article  PubMed  Google Scholar 

  68. Fidock M, DeSilva B. Bioanalysis of biomarkers for drug development. Bioanalysis. 2012;4(20):2425–6.

    Article  CAS  PubMed  Google Scholar 

  69. Zhang A, Sun H, Yan G, Wang P, Wang X. Metabolomics for biomarker discovery: moving to the clinic. Biomed Res Int. 2015;2015:354671.

    PubMed  PubMed Central  Google Scholar 

  70. Marchand CR, Farshidfar F, Rattner J, Bathe OF. A framework for development of useful metabolomic biomarkers and their effective knowledge translation. Metabolites. 2018;8(4):59.

    Article  PubMed  PubMed Central  Google Scholar 

  71. López-López A, López-Gonzálvez A, Barker-Tejeda TC, Barbas C. A review of validated biomarkers obtained through metabolomics. Expert Rev Mol Diagn. 2018;18(6):557–75.

    Article  PubMed  Google Scholar 

  72. Nagana Gowda A, G, Raftery D. Biomarker discovery and translation in metabolomics. Curr Metabolomics. 2013;1(3):227–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Dunn WB, Broadhurst DI, Atherton HJ, Goodacre R, Griffin JL. Systems level studies of mammalian metabolomes: the roles of mass spectrometry and nuclear magnetic resonance spectroscopy. Chem Soc Rev. 2011;40(1):387–426.

    Article  CAS  PubMed  Google Scholar 

  74. Usher-Smith J, Harshfield A, Saunders C, Sharp S, Emery J, Walter F, et al. External validation of risk prediction models for incident colorectal cancer using UK Biobank. Br J Cancer. 2018;118(5):750–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Putri SP, Yamamoto S, Tsugawa H, Fukusaki E. Current metabolomics: technological advances. J Biosci Bioeng. 2013;116(1):9–16.

    Article  CAS  PubMed  Google Scholar 

  76. Emwas A-HM, Salek RM, Griffin JL, Merzaban J. NMR-based metabolomics in human disease diagnosis: applications, limitations, and recommendations. Metabolomics. 2013;9(5):1048–72.

    Article  CAS  Google Scholar 

  77. Almontashiri NAM, Zha L, Young K, Law T, Kellogg MD, Bodamer OA, et al. Clinical validation of targeted and untargeted metabolomics testing for genetic disorders: a 3 year comparative study. Sci Rep. 2020;10(1):9382.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Ali SE, Farag MA, Holvoet P, Hanafi RS, Gad MZ. A comparative metabolomics approach reveals early biomarkers for metabolic response to acute myocardial infarction. Sci Rep. 2016;6(1):36359.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Montuschi P, Paris D, Melck D, Lucidi V, Ciabattoni G, Raia V, et al. NMR spectroscopy metabolomic profiling of exhaled breath condensate in patients with stable and unstable cystic fibrosis. Thorax. 2012;67(3):222–8.

    Article  PubMed  Google Scholar 

  80. Esther CR Jr, Coakley RD, Henderson AG, Zhou Y-H, Wright FA, Boucher RC. Metabolomic evaluation of neutrophilic airway inflammation in cystic fibrosis. Chest. 2015;148(2):507–15.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Molares-Vila A, Corbalán-Rivas A, Carnero-Gregorio M, González-Cespón JL, Rodríguez-Cerdeira C. Biomarkers in glycogen storage diseases: an update. Int J Mol Sci. 2021;22(9):4381.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Swain-Lenz D, Nikolskiy I, Cheng J, Sudarsanam P, Nayler D, Staller MV, et al. Causal genetic variation underlying metabolome differences. Genetics. 2017;206(4):2199–206.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Balashova EE, Maslov DL, Lokhov PG. A metabolomics approach to pharmacotherapy personalization. J Pers Med. 2018;8(3):28.

    Article  PubMed  PubMed Central  Google Scholar 

  84. Jacob M, Lopata AL, Dasouki M, Abdel Rahman AM. Metabolomics toward personalized medicine. Mass Spectrom Rev. 2019;38(3):221–38.

    Article  CAS  PubMed  Google Scholar 

  85. Tsui L-C, Dorfman R. The cystic fibrosis gene: a molecular genetic perspective. Cold Spring Harb Perspect Med. 2013;3(2):a009472.

    Article  PubMed  PubMed Central  Google Scholar 

  86. Cystic Fibrosis Mutation Database [updated April 25, 2011; cited 2021, available from: http://www.genet.sickkids.on.ca/].

  87. Ciuca IM, Marian P, Monica M. Biomarkers in cystic fibrosis lung disease–a review. Rom J Anaesth Intensive Care. 2020;27(2):34.

    PubMed  PubMed Central  Google Scholar 

  88. Quinn RA, Lim YW, Mak TD, Whiteson K, Furlan M, Conrad D, et al. Metabolomics of pulmonary exacerbations reveals the personalized nature of cystic fibrosis disease. PeerJ. 2016;4:e2174.

    Article  PubMed  PubMed Central  Google Scholar 

  89. DiBattista A, McIntosh N, Lamoureux M, Al-Dirbashi OY, Chakraborty P, Britz-McKibbin P. Metabolic signatures of cystic fibrosis identified in dried blood spots for newborn screening without carrier identification. J Proteome Res. 2019;18(3):841–54.

    CAS  Google Scholar 

  90. Moyne O, Castelli F, Bicout DJ, Boccard J, Camara B, Cournoyer B, et al. Metabotypes of Pseudomonas aeruginosa correlate with antibiotic resistance, virulence and clinical outcome in cystic fibrosis chronic infections. Metabolites. 2021;11(2):63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Wolak JE, Esther CR Jr, O’Connell TM. Metabolomic analysis of bronchoalveolar lavage fluid from cystic fibrosis patients. Biomarkers. 2009;14(1):55–60.

    Article  CAS  PubMed  Google Scholar 

  92. Zang X, Monge ME, McCarty NA, Stecenko AA, Fernández FM. Feasibility of early detection of cystic fibrosis acute pulmonary exacerbations by exhaled breath condensate metabolomics: a pilot study. J Proteome Res. 2017;16(2):550–8.

    Article  CAS  PubMed  Google Scholar 

  93. Robroeks CM, van Berkel JJ, Dallinga JW, Jöbsis Q, Zimmermann LJ, Hendriks HJ, et al. Metabolomics of volatile organic compounds in cystic fibrosis patients and controls. Pediatr Res. 2010;68(1):75–80.

    Article  CAS  PubMed  Google Scholar 

  94. Gardiner K, Herault Y, Lott IT, Antonarakis SE, Reeves RH, Dierssen M. Down syndrome: from understanding the neurobiology to therapy. J Neurosci. 2010;30(45):14943–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Bull MJ. Health supervision for children with down syndrome. Am Acad Pediatr. 2011;128:393.

    Google Scholar 

  96. Kolialexi A, Tsangaris GT, Papantoniou N, Anagnostopoulos AK, Vougas K, Bagiokos V, et al. Application of proteomics for the identification of differentially expressed protein markers for Down syndrome in maternal plasma. Prenat Diagn. 2008;28(8):691–8.

    Article  CAS  PubMed  Google Scholar 

  97. Trivedi DK, Iles RK. Shotgun metabolomic profiles in maternal urine identify potential mass spectral markers of abnormal fetal biochemistry–dihydrouracil and progesterone in the metabolism of Down syndrome. Biomed Chromatogr. 2015;29(8):1173–83.

    Article  CAS  PubMed  Google Scholar 

  98. Diaz SO, Barros AS, Goodfellow BJ, Duarte IF, Galhano E, Pita C, et al. Second trimester maternal urine for the diagnosis of trisomy 21 and prediction of poor pregnancy outcomes. J Proteome Res. 2013;12(6):2946–57.

    Article  CAS  PubMed  Google Scholar 

  99. Liu X, Quan S, Fu Y, Wang W, Zhang W, Wang X, et al. Study on amniotic fluid metabolism in the second trimester of trisomy 21. J Clin Lab Anal. 2020;34(3):e23089.

    Article  PubMed  Google Scholar 

  100. Bakshi N, Morris CR. The role of the arginine metabolome in pain: implications for sickle cell disease. J Pain Res. 2016;9:167.

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Kassim AA, Galadanci NA, Pruthi S, DeBaun MR. How I treat and manage strokes in sickle cell disease. Blood. 2015;125(22):3401–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Dembélé KC, Veyrat-Durebex C, Guindo A, Chupin S, Tessier L, Goïta Y, et al. Sickle cell disease: metabolomic profiles of vaso-occlusive crisis in plasma and erythrocytes. J Clin Med. 2020;9(4):1092.

    Article  PubMed  PubMed Central  Google Scholar 

  103. Wu H, Bogdanov M, Zhang Y, Sun K, Zhao S, Song A, et al. Hypoxia-mediated impaired erythrocyte lands’ cycle is pathogenic for sickle cell disease. Sci Rep. 2016;6(1):29637.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Zhang Y, Dai Y, Wen J, Zhang W, Grenz A, Sun H, et al. Detrimental effects of adenosine signaling in sickle cell disease. Nat Med. 2011;17(1):79–86.

    Article  CAS  PubMed  Google Scholar 

  105. Özen H. Glycogen storage diseases: new perspectives. World J Gastroenterol. 2007;13(18):2541.

    Article  PubMed  PubMed Central  Google Scholar 

  106. Tamara M, Martin P, Matthias G, Barbara P, Matthias B, Hochuli M, editors. Untargeted plasma metabolomics identifies broad metabolic perturbations in glycogen storage disease type I. 22nd European Congress of Endocrinology, 2020: BioScientifica.

    Google Scholar 

  107. Chien Y-H, Goldstein JL, Hwu W-L, Smith PB, Lee N-C, Chiang S-C, et al. Baseline urinary glucose tetrasaccharide concentrations in patients with infantile-and late-onset Pompe disease identified by newborn screening. JIMD Rep. 2014;19:67–73.

    Article  Google Scholar 

  108. Kang J, Zhu L, Lu J, Zhang X. Application of metabolomics in autoimmune diseases: insight into biomarkers and pathology. J Neuroimmunol. 2015;279:25–32.

    Article  CAS  PubMed  Google Scholar 

  109. Jafari A, Babajani A, Rezaei-Tavirani M. Multiple sclerosis biomarker discoveries by proteomics and metabolomics approaches. Biomark Insights. 2021;16:11772719211013352.

    Article  PubMed  PubMed Central  Google Scholar 

  110. Sasaki K, Sagawa H, Suzuki M, Yamamoto H, Tomita M, Soga T, et al. Metabolomics platform with capillary electrophoresis coupled with high-resolution mass spectrometry for plasma analysis. Anal Chem. 2018;91(2):1295–301.

    Article  PubMed  Google Scholar 

  111. Zhang X-w, Li Q-h, Dou J-j. Mass spectrometry-based metabolomics in health and medical science: a systematic review. RSC Adv. 2020;10(6):3092–104.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Dettmer K, Aronov PA, Hammock BD. Mass spectrometry-based metabolomics. Mass Spectrom Rev. 2007;26(1):51–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lina A. Dahabiyeh or Refat M. Nimer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dahabiyeh, L.A., Nimer, R.M. (2023). Metabolomics: A Pipeline for Biomarker Discovery in Genetic Diseases. In: Abdel Rahman, A.M. (eds) Clinical Metabolomics Applications in Genetic Diseases. Springer, Singapore. https://doi.org/10.1007/978-981-99-5162-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-5162-8_3

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-5161-1

  • Online ISBN: 978-981-99-5162-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics