Skip to main content

Bringing Human Serum Lipidomics to the Forefront of Clinical Practice: Two Clinical Diagnosis Success Stories

  • Chapter
  • First Online:
Clinical Metabolomics Applications in Genetic Diseases

Abstract

The present chapter describes two clinical applications based on LC-MS and NMR lipidomics that have already been introduced into clinical workflows to better stratify metabolic health, including staging nonalcoholic fatty liver disease according to a specific lipid signature for the disease progression and improving the cardiovascular disease risk based on advanced lipoprotein profiling.

The chapter includes a list of potential applications based on the same technologies and details the envisaged risks and limitations.

The implications of developing advanced high-throughput technologies for clinical applications go much further, such as accelerating the deployment of lipidomic-based assessments in the healthcare system, favoring true disruption through precise and personalized medicine based on global bio-screening approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ALT:

Alanine transaminase

ApoA/B:

Apolipoprotein A/B

AST:

Aspartate transaminase

AUC/ AUROC:

Area under the ROC curve

BMI:

Body mass index

CIBERDEM:

Centro de Investigación Biomédicas en Red de Diabetes y Enfermedades Metabólicas

CLIA:

Clinical Laboratory Improvement Amendments

CMD:

Cardiometabolic disease

CMR:

Cardiometabolic risk

EAS:

European Atherosclerosis Society

ESC:

European Society of Cardiology

FFA:

Free fatty acids

HCC:

Hepatocellular carcinoma

HDL:

High-density lipoproteins

IDL:

Intermediate-density lipoproteins

IISPV:

Institut d’Investigació Sanitària Pere Virgili

IMT:

Intima-media thickness

IRAS:

Insulin resistance atherosclerosis

IVD:

In vitro diagnostic

LC:

Liquid chromatography-mass

LDL:

Low-density lipoproteins

LITMUS:

Liver Investigation: Testing Marker Utility in Steatohepatitis

LMWM:

Low-molecular-weight metabolites

MAFLD:

Metabolic-associated fatty liver disease

MESA:

Multi-Ethnic Study of Atherosclerosis

ML:

Machine learning

MUFAs:

Monounsaturated fatty acids

NASH:

Nonalcoholic steatohepatitis

NIMBLE:

Noninvasive biomarkers of metabolic liver disease

NPV:

Negative predictive value

PPV:

Positive predictive value

RUO :

Research use only

VLDL:

Very-low-density lipoproteins

WHO:

World Health Organization

References

  1. Idle JR, Gonzalez FJ. Metabolomics. Cell Metab. 2007;6(5):348–51.

    Article  CAS  PubMed Central  Google Scholar 

  2. Monteiro MS, Carvalho M, Bastos ML, Guedes de Pinho P. Metabolomics analysis for biomarker discovery: advances and challenges. Curr Med Chem. 2013;20(2):257–71.

    Article  CAS  PubMed  Google Scholar 

  3. Rhee EP, Gerszten RE. Metabolomics and cardiovascular biomarker discovery. Clin Chem. 2012;58(1):139–47.

    Article  CAS  PubMed  Google Scholar 

  4. Zhang A, Sun H, Yan G, Wang P, Wang X. Metabolomics for biomarker discovery: moving to the clinic. Biomed Res Int. 2015;2015:354671.

    PubMed  PubMed Central  Google Scholar 

  5. Dennis EA. Lipidomics joins the omics evolution. Proc Natl Acad Sci U S A. 2009;106(7):2089–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Quehenberger O, Armando AM, Brown AH, Milne SB, Myers DS, Merrill AH, et al. Lipidomics reveals a remarkable diversity of lipids in human plasma. J Lipid Res. 2010;51(11):3299–305.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Meikle TG, Huynh K, Giles C, Meikle PJ. Clinical lipidomics: realizing the potential of lipid profiling. J Lipid Res. 2021;62:100127.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Burla B, Arita M, Arita M, Bendt AK, Cazenave-Gassiot A, Dennis EA, et al. MS-based lipidomics of human blood plasma: a community-initiated position paper to develop accepted guidelines. J Lipid Res. 2018;59(10):2001–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Li J, Vosegaard T, Guo Z. Applications of nuclear magnetic resonance in lipid analyses: an emerging powerful tool for lipidomics studies. Prog Lipid Res. 2017;68:37–56.

    Article  CAS  PubMed  Google Scholar 

  10. Havel RJ, Eder HA, Bragdon JH. The distribution and chemical composition of ultracentrifugally separated lipoproteins in human serum. J Clin Invest. 1955;34(9):1345–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Yeagle PL. Lipid regulation of cell membrane structure and function. FASEB J. 1989;3(7):1833–42.

    Article  CAS  PubMed  Google Scholar 

  12. Magos L. C. Lentner (ed.). Geigy Scientific Tables, 8th edition. Vol. 1. Units of Measurement. Body Fluids. Composition of the Body. Nutrition. 1981, 298 pp. Vol. 2. Introduction to Statistics. Statistical Tables. Mathematical Formulae. 1982, 241 pp. Vol. 3. Physical Chemistry. Composition of the Blood. Haematology. Human Somatometric Data. 1984, 359 pp. Vol. 4. Biochemistry. Metabolism of Xenobiotics. Inborn Error of Metabolism. Pharmacogenetics and Ecogenetics. 1986, 330 pp. Ciba-Geigy, Basel, £12.50 each volume. Distributed in U.K. by Farrand Press. J Appl Toxicol. 1987;7(6):413.

    Article  Google Scholar 

  13. Fahy E, Subramaniam S, Brown HA, Glass CK, Merrill AH Jr, Murphy RC, et al. A comprehensive classification system for lipids. J Lipid Res. 2005;46(5):839–61.

    Article  CAS  PubMed  Google Scholar 

  14. Sunshine H, Iruela-Arispe ML. Membrane lipids and cell signaling. Curr Opin Lipidol. 2017;28(5):408–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Psychogios N, Hau DD, Peng J, Guo AC, Mandal R, Bouatra S, et al. The human serum metabolome. PloS One. 2011;6(2):e16957.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Quehenberger O, Dennis EA. The human plasma lipidome. N Engl J Med. 2011;365(19):1812–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Roth GA, Mensah GA, Johnson CO, Addolorato G, Ammirati E, Baddour LM, et al. Global burden of cardiovascular diseases and risk factors, 1990-2019: update from the GBD 2019 study. J Am Coll Cardiol. 2020;76(25):2982–3021.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Riazi K, Azhari H, Charette JH, Underwood FE, King JA, Afshar EE, et al. The prevalence and incidence of NAFLD worldwide: a systematic review and meta-analysis. Lancet Gastroenterol Hepatol. 2022;7(9):851–61.

    Article  PubMed  Google Scholar 

  19. Langlois MR, Nordestgaard BG, Langsted A, Chapman MJ, Aakre KM, Baum H, et al. Quantifying atherogenic lipoproteins for lipid-lowering strategies: consensus-based recommendations from EAS and EFLM. Clin Chem Lab Med. 2020;58(4):496–517.

    Article  CAS  PubMed  Google Scholar 

  20. McGill HC Jr. The pathogenesis of atherosclerosis. Clin Chem. 1988;34(8b):B33–9.

    PubMed  Google Scholar 

  21. Napoli C, Pignalosa O, de Nigris F, Sica V. Childhood infection and endothelial dysfunction: a potential link in atherosclerosis? Circulation. 2005;111(13):1568–70.

    Article  CAS  PubMed  Google Scholar 

  22. Stary HC, Blankenhorn DH, Chandler AB, Glagov S, Insull W Jr, Richardson M, et al. A definition of the intima of human arteries and of its atherosclerosis-prone regions. A report from the Committee on Vascular Lesions of the Council on Arteriosclerosis, American Heart Association. Circulation. 1992;85(1):391–405.

    Article  CAS  PubMed  Google Scholar 

  23. Bao W, Srinivasan SR, Wattigney WA, Berenson GS. Persistence of multiple cardiovascular risk clustering related to syndrome X from childhood to young adulthood. The Bogalusa Heart Study. Arch Intern Med. 1994;154(16):1842–7.

    Article  CAS  PubMed  Google Scholar 

  24. Peters SA, den Ruijter HM, Palmer MK, Grobbee DE, Crouse JR 3rd, O’Leary DH, et al. Extensive or restricted ultrasound protocols to measure carotid intima-media thickness: analysis of completeness rates and impact on observed rates of change over time. J Am Soc Echocardiogr. 2012;25(1):91–100.

    Article  PubMed  Google Scholar 

  25. Li S, Chen W, Srinivasan SR, Bond MG, Tang R, Urbina EM, et al. Childhood cardiovascular risk factors and carotid vascular changes in adulthood: the Bogalusa Heart Study. JAMA. 2003;290(17):2271–6.

    Article  CAS  PubMed  Google Scholar 

  26. Ouimet M, Barrett TJ, Fisher EA. HDL and reverse cholesterol transport. Circ Res. 2019;124(10):1505–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Sandesara PB, Virani SS, Fazio S, Shapiro MD. The forgotten lipids: triglycerides, remnant cholesterol, and atherosclerotic cardiovascular disease risk. Endocr Rev. 2019;40(2):537–57.

    Article  PubMed  Google Scholar 

  28. Choi SS, Diehl AM. Hepatic triglyceride synthesis and nonalcoholic fatty liver disease. Curr Opin Lipidol. 2008;19(3):295–300.

    Article  CAS  PubMed  Google Scholar 

  29. Page JM, Harrison SA. NASH and HCC. Clin Liver Dis. 2009;13(4):631–47.

    Article  PubMed  Google Scholar 

  30. Day CP, James OF. Steatohepatitis: a tale of two “hits”? Gastroenterology. 1998;114(4):842–5.

    Article  CAS  PubMed  Google Scholar 

  31. Bellentani S, Scaglioni F, Marino M, Bedogni G. Epidemiology of non-alcoholic fatty liver disease. Dig Dis. 2010;28(1):155–61.

    Article  PubMed  Google Scholar 

  32. Masoodi M, Gastaldelli A, Hyötyläinen T, Arretxe E, Alonso C, Gaggini M, et al. Metabolomics and lipidomics in NAFLD: biomarkers and non-invasive diagnostic tests. Nat Rev Gastroenterol Hepatol. 2021;18(12):835–56.

    Article  PubMed  Google Scholar 

  33. Puri P, Baillie RA, Wiest MM, Mirshahi F, Choudhury J, Cheung O, et al. A lipidomic analysis of nonalcoholic fatty liver disease. Hepatology. 2007;46(4):1081–90.

    Article  CAS  PubMed  Google Scholar 

  34. García-Cañaveras JC, Donato MT, Castell JV, Lahoz A. A comprehensive untargeted metabonomic analysis of human steatotic liver tissue by RP and HILIC chromatography coupled to mass spectrometry reveals important metabolic alterations. J Proteome Res. 2011;10(10):4825–34.

    Article  PubMed  Google Scholar 

  35. Kotronen A, Seppänen-Laakso T, Westerbacka J, Kiviluoto T, Arola J, Ruskeepää AL, et al. Hepatic stearoyl-CoA desaturase (SCD)-1 activity and diacylglycerol but not ceramide concentrations are increased in the nonalcoholic human fatty liver. Diabetes. 2009;58(1):203–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Barr J, Caballería J, Martínez-Arranz I, Domínguez-Díez A, Alonso C, Muntané J, et al. Obesity-dependent metabolic signatures associated with nonalcoholic fatty liver disease progression. J Proteome Res. 2012;11(4):2521–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Barr J, Vázquez-Chantada M, Alonso C, Pérez-Cormenzana M, Mayo R, Galán A, Caballería J, Martín-Duce A, Tran A, Wagner C, Luka Z, Lu SC, Castro A, Le Marchand-Brustel Y, Martínez-Chantar ML, Veyrie N, Clément K, Tordjman J, Gual P, Mato JM. Liquid chromatography-mass spectrometry-based parallel metabolic profiling of human and mouse model serum reveals putative biomarkers associated with the progression of nonalcoholic fatty liver disease. J Proteome Res. 2010;9(9):4501–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Mayo R, Crespo J, Martínez-Arranz I, Banales JM, Arias M, Mincholé I, et al. Metabolomic-based noninvasive serum test to diagnose nonalcoholic steatohepatitis: results from discovery and validation cohorts. Hepatol Commun. 2018;2(7):807–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Mishra A, Younossi ZM. Epidemiology and natural history of non-alcoholic fatty liver disease. J Clin Exp Hepatol. 2012;2(2):135–44.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Bril F, Millán L, Kalavalapalli S, McPhaul MJ, Caulfield MP, Martinez-Arranz I, et al. Use of a metabolomic approach to non-invasively diagnose non-alcoholic fatty liver disease in patients with type 2 diabetes mellitus. Diabetes Obes Metab. 2018;20(7):1702–9.

    Article  CAS  PubMed  Google Scholar 

  41. Sachdeva A, Cannon CP, Deedwania PC, Labresh KA, Smith SC Jr, Dai D, et al. Lipid levels in patients hospitalized with coronary artery disease: an analysis of 136,905 hospitalizations in get with the guidelines. Am Heart J. 2009;157(1):111–7.e2.

    Article  CAS  PubMed  Google Scholar 

  42. Langlois MR, Chapman MJ, Cobbaert C, Mora S, Remaley AT, Ros E, et al. Quantifying atherogenic lipoproteins: current and future challenges in the era of personalized medicine and very low concentrations of LDL cholesterol. A consensus statement from EAS and EFLM. Clin Chem. 2018;64(7):1006–33.

    Article  CAS  PubMed  Google Scholar 

  43. Tehrani DM, Zhao Y, Blaha MJ, Mora S, Mackey RH, Michos ED, et al. Discordance of low-density lipoprotein and high-density lipoprotein cholesterol particle versus cholesterol concentration for the prediction of cardiovascular disease in patients with metabolic syndrome and diabetes mellitus (from the multi-ethnic study of atherosclerosis [MESA]). Am J Cardiol. 2016;117(12):1921–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Borén J, Williams KJ. The central role of arterial retention of cholesterol-rich apolipoprotein-B-containing lipoproteins in the pathogenesis of atherosclerosis: a triumph of simplicity. Curr Opin Lipidol. 2016;27(5):473–83.

    Article  PubMed  Google Scholar 

  45. Castañer O, Pintó X, Subirana I, Amor AJ, Ros E, Hernáez Á, et al. Remnant cholesterol, not LDL cholesterol, is associated with incident cardiovascular disease. J Am Coll Cardiol. 2020;76(23):2712–24.

    Article  PubMed  Google Scholar 

  46. Ference BA, Graham I, Tokgozoglu L, Catapano AL. Impact of lipids on cardiovascular health: JACC health promotion series. J Am Coll Cardiol. 2018;72(10):1141–56.

    Article  CAS  PubMed  Google Scholar 

  47. Cole TG, Contois JH, Csako G, McConnell JP, Remaley AT, Devaraj S, et al. Association of apolipoprotein B and nuclear magnetic resonance spectroscopy-derived LDL particle number with outcomes in 25 clinical studies: assessment by the AACC Lipoprotein and Vascular Diseases Division Working Group on Best Practices. Clin Chem. 2013;59(5):752–70.

    Article  CAS  PubMed  Google Scholar 

  48. Pichler G, Amigo N, Tellez-Plaza M, Pardo-Cea MA, Dominguez-Lucas A, Marrachelli VG, et al. LDL particle size and composition and incident cardiovascular disease in a South-European population: the Hortega-Liposcale Follow-up Study. Int J Cardiol. 2018;264:172–8.

    Article  CAS  PubMed  Google Scholar 

  49. Mach F, Baigent C, Catapano AL, Koskinas KC, Casula M, Badimon L, et al. 2019 ESC/EAS guidelines for the management of dyslipidaemias: lipid modification to reduce cardiovascular risk. Eur Heart J. 2020;41(1):111–88.

    Article  PubMed  Google Scholar 

  50. Masana L, Ibarretxe D. Magnetic resonance-assessed lipoprotein profile. The time has come for its clinical use. Rev Esp Cardiol (Engl ed). 2022;75(1):5–8.

    Article  PubMed  Google Scholar 

  51. Aday AW, Lawler PR, Cook NR, Ridker PM, Mora S, Pradhan AD. Lipoprotein particle profiles, standard lipids, and peripheral artery disease incidence. Circulation. 2018;138(21):2330–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Mora S, Buring JE, Ridker PM. Discordance of low-density lipoprotein (LDL) cholesterol with alternative LDL-related measures and future coronary events. Circulation. 2014;129(5):553–61.

    Article  CAS  PubMed  Google Scholar 

  53. Otvos JD, et al. Development of a proton nuclear magnetic resonance spectroscopic method for determining plasma lipoprotein concentrations and subspecies distributions from a single, rapid measurement. Clin Chem. 1992;38:1632.

    Article  CAS  PubMed  Google Scholar 

  54. Folse HJ, Goswami D, Rengarajan B, Budoff M, Kahn R. Clinical-and cost-effectiveness of LDL particle-guided statin therapy: a simulation study. Atherosclerosis. 2014;236(1):154–61.

    Article  CAS  PubMed  Google Scholar 

  55. Allaire J, Vors C, Couture P, Lamarche B. LDL particle number and size and cardiovascular risk: anything new under the sun? Curr Opin Lipidol. 2017;28(3):261–6.

    Article  CAS  PubMed  Google Scholar 

  56. Li M, Yang L, Bai Y, Liu H. Analytical methods in lipidomics and their applications. Anal Chem. 2014;86(1):161–75.

    Article  CAS  PubMed  Google Scholar 

  57. Wishart DS. Quantitative metabolomics using NMR. TrAC Trends Anal Chem. 2008;27(3):228–37.

    Article  CAS  Google Scholar 

  58. Cajka T, Fiehn O. Comprehensive analysis of lipids in biological systems by liquid chromatography-mass spectrometry. Trends Analyt Chem. 2014;61:192–206.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Jeremy K, Nicholson JCL. Systems biology: metabonomics. Nature. 2008;455(7216):1054–6.

    Article  Google Scholar 

  60. DeFilippis AP, Trainor PJ, Hill BG, Amraotkar AR, Rai SN, Hirsch GA, Rouchka EC, Bhatnagar A. Identification of a plasma metabolomic signature of thrombotic myocardial infarction that is distinct from non-thrombotic myocardial infarction and stable coronary artery disease. PLoS One. 2017;12(4):e0175591.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Gallo V, Intini N, Mastrorilli P, Latronico M, Scapicchio P, Triggiani M, et al. Performance assessment in fingerprinting and multi component quantitative NMR analyses. Anal Chem. 2015;87:6709–17.

    Article  CAS  PubMed  Google Scholar 

  62. Eckhart AD, Beebe K, Milburn M. Metabolomics as a key integrator for “omic” advancement of personalized medicine and future therapies. Clin Trans Sci. 2012;5:285–8.

    Article  Google Scholar 

  63. Cajka T, Fiehn O. Increasing lipidomic coverage by selecting optimal mobile-phase modifiers in LC–MS of blood plasma. Metabolomics. 2016;12(34).

    Google Scholar 

  64. Isaac G, McDonald S, Astarita G. Lipid separation using UPLC with charged surface hybrid technology. Milford, MA: Waters Corp.

    Google Scholar 

  65. Ulmer CZ, Patterson RE, Koelmel JP, Garrett TJ, Yost RAA. Robust lipidomics workflow for mammalian cells, plasma, and tissue using liquid-chromatography high- resolution tandem mass spectrometry. Methods Mol Biol. 2017;1609:91–106.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Haider A, Wei Y-C, Lim K, Barbosa AD, Liu C-H, Weber U, Mlodzik M, Oras K, Collier S, Hussain MM, et al. PCYT1A regulates phosphatidylcholine homeostasis from the inner nuclear membrane in response to membrane stored curvature elastic stress. Dev Cell. 2018;45:481–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Pawula M, Hawthorne G, Smith GT, Hill HM. Best practice in biological sample collection, processing, and storage for LC-MS in bioanalysis of drugs. In: Handbook of LC-MS bioanalysis: best practices, experimental protocols, and regulations; 2013. p. 139–64.

    Chapter  Google Scholar 

  68. Loo RL, Lodge S, Kimhofer T, Bong SH, Begum S, Whiley L, Holmes E. Quantitative in-vitro diagnostic NMR spectroscopy for lipoprotein and metabolite measurements in plasma and serum: recommendations for analytical artifact minimization with special reference to COVID-19/SARS-CoV-2 samples. J Proteome Res. 2020;19(11):4428–41.

    Google Scholar 

  69. Rasmussen DGK, Anstee QM, Torstenson R, Golding B, Patterson SD, Brass C, Karsdal MA. NAFLD and NASH Biomarker Qualification in the LITMUS consortium–Lessons learned. J Hepatol. 2022. 2023;78(4):852–65. https://doi.org/10.1016/j.jhep.2022.11.028.

  70. Sanyal AJ, Yates KP, Daly E, Dehn CA, Neuschwander-Tetri B, Kowdley KV, Vuppalanchi RK, Tonascia JA, Samir AE, Sirlin CB, Fowler KJ, Heymann H, Kamphaus TN, Loomba R, Calle RA; the NIMBLE Project Team. Primary results of the nimble stage 1-NASH CRN study of circulating biomarkers for nonalcoholic steatohepatitis and its activity and fibrosis stage. AASLD meeting. 2021.

    Google Scholar 

  71. Noureddin MM, et al. Si llega a tiempo la cita ponemos esa, si no referenciamos el abstract poblicado en J of Hepatology por los mismos autores. Hepatology. 2023.

    Google Scholar 

  72. Connelly MA, Gruppen EG, Wolak-Dinsmore J, et al. GlycA, a marker of acute phase glycoproteins, and the risk of incident type 2 diabetes mellitus: PREVEND study. Clin Chim Acta. 2016;452:10–7.

    Article  CAS  PubMed  Google Scholar 

  73. Otvos JD, Mora S, Shalaurova I, Greenland P, Mackey RH, Goff DC Jr. Clinical implications of discordance between LDL cholesterol and LDL particle number. J Clin Lipidol. 2011;5(2):105–13.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Mora S, Otvos JD, Rifai N, Rosenson RS, Buring JE, Ridker PM. Lipoprotein particle profiles by nuclear magnetic resonance compared with standard lipids and apolipoproteins in predicting incident cardiovascular disease in women. Circulation. 2009;119:931–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Carmena R, Duriez P, Fruchart JC. Atherogenic lipoprotein particles in atherosclerosis. Circulation. 2004;109(23 Suppl 1):III2–7.

    PubMed  Google Scholar 

  76. Festa A, Williams K, Hanley AJ, et al. Nuclear magnetic resonance lipoprotein abnormalities in prediabetic subjects in the Insulin Resistance Atherosclerosis Study. Circulation. 2005;111(25):3465–72.

    Article  PubMed  Google Scholar 

  77. Pintó X, Masana L, Civeira F, et al. Consensus document of an expert group from the Spanish Society of Arteriosclerosis (SEA) on the clinical use of nuclear magnetic resonance to assess lipoprotein metabolism (Liposcale®). Clin Investig Arterioscler. 2020;32(5):219–29.

    PubMed  Google Scholar 

  78. Puig-Jové C, Castelblanco E, Falguera M, et al. Advanced lipoprotein profile in individuals with normal and impaired glucose metabolismPerfil lipoproteico avanzado en individuos con metabolismo glucémico normal y alterado. Rev Esp Cardiol (Engl Ed). 2022;75(1):22–30.

    Article  PubMed  Google Scholar 

  79. Aru V, Lam C, Khakimov B, Hoefsloot HCJ, Zwanenburg G, Lind MV, Schäfer H, van Duynhoven J, Jacobs DM, Smilde AK, Engelsen SB. Quantification of lipoprotein profiles by nuclear magnetic resonance spectroscopy and multivariate data analysis. Trends Analyt Chem. 2017;94:210–9.

    Article  CAS  Google Scholar 

  80. Ala-Korpela M, Korhonen A, Keisala J, et al. 1H NMR-based absolute quantitation of human lipoproteins and their lipid contents directly from plasma. J Lipid Res. 1994;35(12):2292–304.

    Article  CAS  PubMed  Google Scholar 

  81. Mallol R, Amigó N, Rodríguez MA, et al. Liposcale: a novel advanced lipoprotein test based on 2D diffusion-ordered 1H NMR spectroscopy. J Lipid Res. 2015;56(3):737–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Villoslada P, Alonso C, Agirrezabal I, Kotelnikova E, Zubizarreta I, Pulido-Valdeolivas I, et al. Metabolomic signatures associated with disease severity in multiple sclerosis. Neurol Neuroimmunol Neuroinflamm. 2017;4(2):e321.

    Article  PubMed  PubMed Central  Google Scholar 

  83. Cubiella J, Clos-Garcia M, Alonso C, Martinez-Arranz I, Perez-Cormenzana M, Barrenetxea Z, et al. Targeted UPLC-MS metabolic analysis of human faeces reveals novel low-invasive candidate markers for colorectal cancer. Cancers (Basel). 2018;10(9):300.

    Article  PubMed  Google Scholar 

  84. Carmona-Maurici J, Amigó N, Cuello E, et al. Bariatric surgery decreases oxidative stress and protein glycosylation in patients with morbid obesity. Eur J Clin Investig. 2020;50(11):e13320.

    Article  CAS  Google Scholar 

  85. Moncayo S, Insenser M, Martínez-García MÁ, et al. Acute-phase glycoprotein profile responses to different oral macronutrient challenges: influence of sex, functional hyperandrogenism and obesity. Clin Nutr. 2021;40(3):1241–6.

    Article  CAS  PubMed  Google Scholar 

  86. Fuertes-Martín R, Taverner D, Vallvé JC, et al. Characterization of 1H NMR plasma glycoproteins as a new strategy to identify inflammatory patterns in rheumatoid arthritis. J Proteome Res. 2018;17(11):3730–9.

    Article  PubMed  Google Scholar 

  87. Fuertes-Martín R, Correig X, Vallvé JC, Amigó N. Human serum/plasma glycoprotein analysis by 1H-NMR, an emerging method of inflammatory assessment. J Clin Med. 2020;9(2):354.

    Article  PubMed  PubMed Central  Google Scholar 

  88. McGarrah RW, Kelly JP, Craig DM, et al. A novel protein glycan-derived inflammation biomarker independently predicts cardiovascular disease and modifies the association of HDL subclasses with mortality. Clin Chem. 2017;63(1):288.

    Article  CAS  PubMed  Google Scholar 

  89. Holmes MV, Millwood IY, Kartsonaki C, et al. Lipids, lipoproteins, and metabolites and risk of myocardial infarction and stroke. J Am Coll Cardiol. 2018;71(6):620–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Otvos JD, Guyton JR, Connelly MA, et al. Relations of GlycA and lipoprotein particle subspecies with cardiovascular events and mortality: a post hoc analysis of the AIM-HIGH trial. J Clin Lipidol. 2018;12(2):348–55.

    Article  PubMed  PubMed Central  Google Scholar 

  91. Kohno S, Keenan AL, Ntambi JM, Miyazaki M. Lipidomic insight into cardiovascular diseases. Biochem Biophys Res Commun. 2018;504(3):590–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Cheng S, Rhee EP, Larson MG, Lewis GD, McCabe EL, Shen D, et al. Metabolite profiling identifies pathways associated with metabolic risk in humans. Circulation. 2012;125(18):2222–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Würtz P, Havulinna AS, Soininen P, et al. Metabolite profiling and cardiovascular event risk: a prospective study of 3 population-based cohorts. Circulation. 2015;131(9):774–85.

    Article  PubMed  PubMed Central  Google Scholar 

  94. Würtz P, Kangas AJ, Soininen P, Lawlor DA, Davey Smith G, Ala-Korpela M. Quantitative serum nuclear magnetic resonance metabolomics in large-scale epidemiology: a primer on-omic technologies. Am J Epidemiol. 2017;186(9):1084–96.

    Article  PubMed  PubMed Central  Google Scholar 

  95. Wang TJ, Larson MG, Vasan RS, et al. Metabolite profiles and the risk of developing diabetes. Nat Med. 2011;17(4):448–53.

    Article  PubMed  PubMed Central  Google Scholar 

  96. Ahola-Olli AV, Mustelin L, Kalimeri M, et al. Circulating metabolites and the risk of type 2 diabetes: a prospective study of 11,896 young adults from four Finnish cohorts. Diabetologia. 2019;62(12):2298–309.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Hameed A, Mojsak P, Buczynska A, Suleria HAR, Kretowski A, Ciborowski M. Altered metabolome of lipids and amino acids species: a source of early signature biomarkers of T2DM. J Clin Med. 2020;9(7):2257.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Mussap M, Zaffanello M, Fanos V. Metabolomics: a challenge for detecting and monitoring inborn errors of metabolism. Ann Transl Med. 2018;6(17):338.

    Article  PubMed  PubMed Central  Google Scholar 

  99. Embade N, Cannet C, Diercks T, et al. NMR-based newborn urine screening for optimized detection of inherited errors of metabolism. Sci Rep. 2019;9:13607.

    Article  Google Scholar 

  100. Malo AI, Rull A, Girona J, et al. Glycoprotein profile assessed by 1H-NMR as a global inflammation marker in patients with HIV infection. A prospective study. J Clin Med. 2020;9(5):1344.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Zhang Y, Zhang S, Wang G. Metabolomic biomarkers in diabetic kidney diseases—a systematic review. J Diabetes Complicat. 2015;29(8):1345–51.

    Article  Google Scholar 

  102. Bermudez-Lopez M, Perpiñan H, Amigo N, et al. Advanced lipoprotein parameters could better explain atheromatosis in non-diabetic chronic kidney disease patients. Clin Kidney J. 2021;14(12):2591–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Elebo N, Omoshoro-Jones J, Fru PN, et al. Serum metabolomic and lipoprotein profiling of pancreatic ductal adenocarcinoma patients of African ancestry. Meta. 2021;11(10):663.

    CAS  Google Scholar 

  104. Mayers JR, Wu C, Clish CB, et al. Elevation of circulating branched-chain amino acids is an early event in human pancreatic adenocarcinoma development. Nat Med. 2014;20(10):1193–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Schmidt DR, Patel R, Kirsch DG, Lewis CA, Vander Heiden MG, Locasale JW. Metabolomics in cancer research and emerging applications in clinical oncology. Cancer J Clin. 2021;71(4):333–58.

    Article  Google Scholar 

  106. Laguna A, Xicoy H, Tolosa E, et al. Serum metabolic biomarkers for synucleinopathy conversion in isolated REM sleep behavior disorder. npj Parkinsons Dis. 2021;7:40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Rademacher TD, Meuth SG, Wiendl H, Johnen A, Landmeyer NC. Molecular biomarkers and cognitive impairment in multiple sclerosis: state of the field, limitations, and future direction–a systematic review and meta-analysis. Neurosci Biobehav Rev. 2023;146:105035.

    Article  CAS  PubMed  Google Scholar 

  108. Langlois MR, Chapman MJ, Cobbaert C, et al. Quantifying atherogenic lipoproteins: current and future challenges in the era of personalized medicine and very low concentrations of LDL cholesterol. A consensus statement from EAS and EFLM. Clin Chem. 2018;64(7):1006–33.

    Article  CAS  PubMed  Google Scholar 

  109. Karppinen JE, Törmäkangas T, Kujala UM, et al. Menopause modulates the circulating metabolome: evidence from a prospective cohort study. Eur J Prev Cardiol. 2022;29(10):1448–59.

    Article  PubMed  Google Scholar 

  110. Gawrieh S, Noureddin M, Loo N, et al. Saroglitazar, a PPAR-α/γ agonist, for treatment of NAFLD: a randomized controlled double-blind phase 2 trial. Hepatology. 2021;74(4):1809–924.

    Article  CAS  PubMed  Google Scholar 

  111. O’Keeffe LM, Bell JA, O’Neill KN, et al. Sex-specific associations of adiposity with cardiometabolic traits in the UK: a multi–life stage cohort study with repeat metabolomics. PLoS Med. 2022;19(1):e1003636.

    Article  PubMed  PubMed Central  Google Scholar 

  112. Iida M, Harada S, Takebayashi T. Application of metabolomics to epidemiological studies of atherosclerosis and cardiovascular disease. J Atheroscler Thromb. 2019;26(9):747–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Miranda J, Simões RV, Paules C, et al. Metabolic profiling and targeted lipidomics in small for gestational age and foetal growth restriction. Sci Rep. 2018;9:13614.

    Article  Google Scholar 

  114. Youssef L, Simões RV, Miranda J, et al. Paired maternal and fetal metabolomics reveal a differential fingerprint in preeclampsia versus fetal growth restriction. Sci Rep. 2021;11(1):14422.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Algaba-Chueca F, Maymó-Masip E, Ballesteros M, et al. Cord blood advanced lipoprotein testing reveals an interaction between gestational diabetes and birth-weight and suggests a new early biomarker of infant obesity. Biomedicine. 2022;10(5):1033.

    CAS  Google Scholar 

  116. Panyard DJ, Yu B, Snyder MP. The metabolomics of human aging: advances, challenges, and opportunities. Sci Adv. 2022;8(42):eadd6155.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Silva RA, Pereira TCS, Souza AR, Ribeiro PR. 1H NMR-based metabolite profiling for biomarker identification. Clin Chim Acta. 2020;502:269–79.

    Article  CAS  PubMed  Google Scholar 

  118. Bashir NA, Bashir AAM, Bashir HA. Effect of vitamin D deficiency on lipid profile. Am J Lab Med. 2019;4(1):11–8.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Núria Amigó Grau .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Amigó Grau, N., Ortiz Betes, P. (2023). Bringing Human Serum Lipidomics to the Forefront of Clinical Practice: Two Clinical Diagnosis Success Stories. In: Abdel Rahman, A.M. (eds) Clinical Metabolomics Applications in Genetic Diseases. Springer, Singapore. https://doi.org/10.1007/978-981-99-5162-8_12

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-5162-8_12

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-5161-1

  • Online ISBN: 978-981-99-5162-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics