Skip to main content

Metabolomic Role in Personalized Medicine: An Update

  • Chapter
  • First Online:
Clinical Metabolomics Applications in Genetic Diseases

Abstract

Metabolomics is a rapidly evolving omic technology in personalized medicine and has been extensively valued because it involves prescribing the right medicine to the right patient. The breathtaking boost in metabolomic technology has paved the huge potential for its application in personalized medicine. Correlating the metabolic phenotype of individuals into subgroups that respond differently is also becoming a reality through metabolomics. The perception of the metabotype has emerged and played a crucial role in developing a personalized healthcare system. Metabotypes are groups of individuals defined based on their similarities in metabolic profiles. Metabolomics has been utilized in the therapeutic outcomes of drugs, thereby mapping the metabolic profiles of the patients with their responses.

In contrast, the efficacy and toxicity of drugs can be predicted in the pharmacometabolomic method to provide the theoretical basis for individualized medical treatment. This chapter overviews clinical metabotyping, disease biomarker discovery, and pharmacometabolomics toward personalized medicine, improving drug efficacy. These three approaches enhance the understanding of the disease’s pathophysiological mechanisms and the metabolic side effects of drugs on human bodies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

3-OHKY:

3-hydroxykyenurinine

CAR:

Chimeric antigen receptor

CIL-LC/MS:

Chemical isotope labeling liquid mass spectrometry

DBS:

Dried blood spots

DILI:

Idiosyncratic drug-induced liver injury

DIPP:

Diabetes prediction and prevention

DOCK8:

Dedicator of cytokinesis 8

EPA:

Environment Protection Agency

FDA:

Food and Drug Administration

IEM:

Inborn errors of metabolism

LC-MSMS:

Liquid chromatography-tandem mass spectrometry

MSI-CE-MS:

Multisegment injection-capillary electrophoresis-mass spectrometry

NGS:

Next-generation sequencing

NMR:

Nuclear magnetic resonance

NUDT15:

Nudix hydrolase 15

PC:

Pancreatic cancer

REIMS:

Rapid evaporative ionization mass spectrometry

SRM:

Selected reaction monitoring

SSRIs:

Selective serotonin reuptake inhibitors

ToF:

Time of flight

TPMT:

Thiopurine methyltransferase

References

  1. German JB, Hammock BD, Watkins SM. Metabolomics: building on a century of biochemistry to guide human health. Metabolomics. 2005;1(1):3–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Wishart DS, Tzur D, Knox C, Eisner R, Guo AC, Young N, et al. HMDB: the human metabolome database. Nucleic Acids Res. 2007;35(Database issue):D521–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Kohler I, Verhoeven A, Derks RJ, Giera M. Analytical pitfalls and challenges in clinical metabolomics. Bioanalysis. 2016;8(14):1509–32.

    Article  CAS  PubMed  Google Scholar 

  4. Jacob M, Lopata AL, Dasouki M, Abdel Rahman AM. Metabolomics toward personalized medicine. Mass Spectrom Rev. 2017;38:221.

    Article  PubMed  Google Scholar 

  5. Nicholson JK, Holmes E, Kinross JM, Darzi AW, Takats Z, Lindon JC. Metabolic phenotyping in clinical and surgical environments. Nature. 2012;491(7424):384–92.

    Article  CAS  PubMed  Google Scholar 

  6. Hood L, Flores M. A personal view on systems medicine and the emergence of proactive P4 medicine: predictive, preventive, personalized and participatory. New Biotechnol. 2012;29(6):613–24.

    Article  CAS  Google Scholar 

  7. Jacob M, Lopata AL, Dasouki M, Abdel Rahman AM. Metabolomics toward personalized medicine. Mass Spectrom Rev. 2019;38(3):221–38.

    Article  CAS  PubMed  Google Scholar 

  8. Wishart DS. Metabolomics: the principles and potential applications to transplantation. Am J Transpl. 2005;5(12):2814–20.

    Article  CAS  Google Scholar 

  9. Jameson JL, Longo DL. Precision medicine--personalized, problematic, and promising. N Engl J Med. 2015;372(23):2229–34.

    Article  CAS  PubMed  Google Scholar 

  10. Abdel Rahman AM, Lopata AL, Randell EW, Helleur RJ. Absolute quantification method and validation of airborne snow crab allergen tropomyosin using tandem mass spectrometry. Anal Chim Acta. 2010;681(1–2):49–55.

    Article  PubMed  Google Scholar 

  11. Villoria JG, Pajares S, López RM, Marin JL, Ribes A. Neonatal screening for inherited metabolic diseases in 2016. Semin Pediatr Neurol. 2016;23(4):257–72.

    Article  PubMed  Google Scholar 

  12. Bhattacharya K, Wotton T, Wiley V. The evolution of blood-spot newborn screening. Transl Pediatr. 2014;3(2):63–70.

    PubMed  PubMed Central  Google Scholar 

  13. Nicholson JK, Lindon JC, Holmes E. ‘Metabonomics’: understanding the metabolic responses of living systems to pathophysiological stimuli via multivariate statistical analysis of biological NMR spectroscopic data. Xenobiotica. 1999;29(11):1181–9.

    Article  CAS  PubMed  Google Scholar 

  14. Holmes E, Loo RL, Stamler J, Bictash M, Yap IK, Chan Q, et al. Human metabolic phenotype diversity and its association with diet and blood pressure. Nature. 2008;453(7193):396–400.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Marinković T, Sysi-Aho M, Orešič M. Integrated model of metabolism and autoimmune response in β-cell death and progression to type 1 diabetes. PLoS One. 2012;7(12):e51909.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Ziegler AG, Nepom GT. Prediction and pathogenesis in type 1 diabetes. Immunity. 2010;32(4):468–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Pflueger M, Seppänen-Laakso T, Suortti T, Hyötyläinen T, Achenbach P, Bonifacio E, et al. Age- and islet autoimmunity-associated differences in amino acid and lipid metabolites in children at risk for type 1 diabetes. Diabetes. 2011;60(11):2740–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Oresic M, Simell S, Sysi-Aho M, Näntö-Salonen K, Seppänen-Laakso T, Parikka V, et al. Dysregulation of lipid and amino acid metabolism precedes islet autoimmunity in children who later progress to type 1 diabetes. J Exp Med. 2008;205(13):2975–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Cortés-Martín A, Colmenarejo G, Selma MV, Espín JC. Genetic polymorphisms, mediterranean diet and microbiota-associated urolithin metabotypes can predict obesity in childhood-adolescence. Sci Rep. 2020;10(1):7850.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Masood A, Jacob M, Gu X, Abdel Jabar M, Benabdelkamel H, Nizami I, et al. Distinctive metabolic profiles between Cystic Fibrosis mutational subclasses and lung function. Metabolomics. 2021;17(1):4.

    Article  CAS  PubMed  Google Scholar 

  21. DiBattista A, McIntosh N, Lamoureux M, Al-Dirbashi OY, Chakraborty P, Britz-McKibbin P. Metabolic signatures of cystic fibrosis identified in dried blood spots for newborn screening without carrier identification. J Proteome Res. 2019;18(3):841–54.

    CAS  PubMed  Google Scholar 

  22. Al-Qahtani W, Abdel Jabar M, Masood A, Jacob M, Nizami I, Dasouki M, et al. Dried blood spot-based metabolomic profiling in adults with cystic fibrosis. J Proteome Res. 2020;19(6):2346–57.

    Article  CAS  PubMed  Google Scholar 

  23. McGarry A, Gaughan J, Hackmyer C, Lovett J, Khadeer M, Shaikh H, et al. Cross-sectional analysis of plasma and CSF metabolomic markers in Huntington’s disease for participants of varying functional disability: a pilot study. Sci Rep. 2020;10(1):20490.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Luck M, Schmitt C, Talbi N, Gouya L, Caradeuc C, Puy H, et al. Correction to: urinary metabolic profiling of asymptomatic acute intermittent porphyria using a rule-mining-based algorithm. Metabolomics. 2018;14(3):21.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Tang Y, El-Chemaly S, Taveira-Dasilva A, Goldberg HJ, Bagwe S, Rosas IO, et al. Alterations in polyamine metabolism in patients with lymphangioleiomyomatosis and tuberous sclerosis complex 2-deficient cells. Chest. 2019;156(6):1137–48.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Jacob M, Gu X, Luo X, Al-Mousa H, Arnaout R, Al-Saud B, et al. Metabolomics distinguishes DOCK8 deficiency from atopic dermatitis: towards a biomarker discovery. Meta. 2019;9(11):274.

    CAS  Google Scholar 

  27. Adebiyi MG, Manalo JM, Xia Y. Metabolomic and molecular insights into sickle cell disease and innovative therapies. Blood Adv. 2019;3(8):1347–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Cannet C, Pilotto A, Rocha JC, Schäfer H, Spraul M, Berg D, et al. Lower plasma cholesterol, LDL-cholesterol and LDL-lipoprotein subclasses in adult phenylketonuria (PKU) patients compared to healthy controls: results of NMR metabolomics investigation. Orphanet J Rare Dis. 2020;15(1):61.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Tebani A, Abily-Donval L, Schmitz-Afonso I, Piraud M, Ausseil J, Zerimech F, et al. Analysis of mucopolysaccharidosis type VI through integrative functional metabolomics. Int J Mol Sci. 2019;20(2):446.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Seeßle J, Gan-Schreier H, Kirchner M, Stremmel W, Chamulitrat W, Merle U. Plasma Lipidome, PNPLA3 polymorphism and hepatic steatosis in hereditary hemochromatosis. BMC Gastroenterol. 2020;20(1):230.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Hall AM, Vilasi A, Garcia-Perez I, Lapsley M, Alston CL, Pitceathly RD, et al. The urinary proteome and metabonome differ from normal in adults with mitochondrial disease. Kidney Int. 2015;87(3):610–22.

    Article  CAS  PubMed  Google Scholar 

  32. Homma K, Toda E, Osada H, Nagai N, Era T, Tsubota K, et al. Taurine rescues mitochondria-related metabolic impairments in the patient-derived induced pluripotent stem cells and epithelial-mesenchymal transition in the retinal pigment epithelium. Redox Biol. 2021;41:101921.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Antonaros F, Ghini V, Pulina F, Ramacieri G, Cicchini E, Mannini E, et al. Plasma metabolome and cognitive skills in Down syndrome. Sci Rep. 2020;10(1):10491.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Bugajska J, Berska J, Wójcik M, Starzyk JB, Sztefko K. Metabolic fingerprint of turner syndrome. J Clin Med. 2020;9(3):664.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Sen P, Carlsson C, Virtanen SM, Simell S, Hyöty H, Ilonen J, et al. Persistent alterations in plasma lipid profiles before introduction of gluten in the diet associated with progression to celiac disease. Clin Transl Gastroenterol. 2019;10(5):1–10.

    Article  PubMed  Google Scholar 

  36. Carlson AK, Rawle RA, Wallace CW, Adams E, Greenwood MC, Bothner B, et al. Global metabolomic profiling of human synovial fluid for rheumatoid arthritis biomarkers. Clin Exp Rheumatol. 2019;37(3):393–9.

    PubMed  Google Scholar 

  37. Yang QJ, Zhao JR, Hao J, Li B, Huo Y, Han YL, et al. Serum and urine metabolomics study reveals a distinct diagnostic model for cancer cachexia. J Cachexia Sarcopenia Muscle. 2018;9(1):71–85.

    Article  PubMed  Google Scholar 

  38. Tzafetas M, Mitra A, Paraskevaidi M, Bodai Z, Kalliala I, Bowden S, et al. The intelligent knife (iKnife) and its intraoperative diagnostic advantage for the treatment of cervical disease. Proc Natl Acad Sci U S A. 2020;117(13):7338–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Wikoff WR, Gangoiti JA, Barshop BA, Siuzdak G. Metabolomics identifies perturbations in human disorders of propionate metabolism. Clin Chem. 2007;53(12):2169–76.

    Article  CAS  PubMed  Google Scholar 

  40. Halama A, Kulinski M, Kader SA, Satheesh NJ, Abou-Samra AB, Suhre K, et al. Measurement of 1,5-anhydroglucitol in blood and saliva: from non-targeted metabolomics to biochemical assay. J Transl Med. 2016;14(1):140.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Liu T, Li J, Xu F, Wang M, Ding S, Xu H, et al. Comprehensive analysis of serum metabolites in gestational diabetes mellitus by UPLC/Q-TOF-MS. Anal Bioanal Chem. 2016;408(4):1125–35.

    Article  CAS  PubMed  Google Scholar 

  42. Suhre K, Meisinger C, Döring A, Altmaier E, Belcredi P, Gieger C, et al. Metabolic footprint of diabetes: a multiplatform metabolomics study in an epidemiological setting. PLoS One. 2010;5(11):e13953.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Blasco H, Veyrat-Durebex C, Bertrand M, Patin F, Labarthe F, Henique H, et al. A multiplatform metabolomics approach to characterize plasma levels of phenylalanine and tyrosine in phenylketonuria. JIMD reports. 2017;32:69–79.

    Article  CAS  PubMed  Google Scholar 

  44. Zang X, Monge ME, Gaul DA, McCarty NA, Stecenko A, Fernández FM. Early detection of cystic fibrosis acute pulmonary exacerbations by exhaled breath condensate metabolomics. J Proteome Res. 2020;19(1):144–52.

    Article  CAS  PubMed  Google Scholar 

  45. Steinbusch LKM, Wang P, Waterval H, Stassen F, Coene KLM, Engelke UFH, et al. Targeted urine metabolomics with a graphical reporting tool for rapid diagnosis of inborn errors of metabolism. J Inherit Metab Dis. 2021;44(5):1113–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Fry TJ, Shah NN, Orentas RJ, Stetler-Stevenson M, Yuan CM, Ramakrishna S, et al. CD22-targeted CAR T cells induce remission in B-ALL that is naive or resistant to CD19-targeted CAR immunotherapy. Nat Med. 2018;24(1):20–8.

    Article  CAS  PubMed  Google Scholar 

  47. Davis PB, Yasothan U, Kirkpatrick P. Ivacaftor. Nat Rev Drug Discov. 2012;11(5):349–50.

    Article  CAS  PubMed  Google Scholar 

  48. Gulland A. Cystic fibrosis drug is not cost effective, says NICE. BMJ. 2016;353:i3409.

    Article  PubMed  Google Scholar 

  49. Clayton TA, Lindon JC, Cloarec O, Antti H, Charuel C, Hanton G, et al. Pharmaco-metabonomic phenotyping and personalized drug treatment. Nature. 2006;440(7087):1073–7.

    Article  CAS  PubMed  Google Scholar 

  50. Holmes E, Wilson ID, Nicholson JK. Metabolic phenotyping in health and disease. Cell. 2008;134(5):714–7.

    Article  CAS  PubMed  Google Scholar 

  51. Kaddurah-Daouk R, Weinshilboum R. Metabolomic signatures for drug response phenotypes: pharmacometabolomics enables precision medicine. Clin Pharmacol Ther. 2015;98(1):71–5.

    Article  CAS  PubMed  Google Scholar 

  52. Jain D, Ahmad T, Cairo M, Aronow W. Cardiotoxicity of cancer chemotherapy: identification, prevention and treatment. Ann Transl Med. 2017;5(17):348.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Mosedale M, Watkins PB. Drug-induced liver injury: advances in mechanistic understanding that will inform risk management. Clin Pharmacol Ther. 2017;101(4):469–80.

    Article  CAS  PubMed  Google Scholar 

  54. Niedzwiecki MM, Walker DI, Vermeulen R, Chadeau-Hyam M, Jones DP, Miller GW. The exposome: molecules to populations. Annu Rev Pharmacol Toxicol. 2019;59:107–27.

    Article  CAS  PubMed  Google Scholar 

  55. Lipinski CA. Drug-like properties and the causes of poor solubility and poor permeability. J Pharmacol Toxicol Methods. 2000;44(1):235–49.

    Article  CAS  PubMed  Google Scholar 

  56. Lazarou J, Pomeranz BH, Corey PN. Incidence of adverse drug reactions in hospitalized patients: a meta-analysis of prospective studies. JAMA. 1998;279(15):1200–5.

    Article  CAS  PubMed  Google Scholar 

  57. Gebregiworgis T, Bhinderwala F, Purohit V, Chaika NV, Singh PK, Powers R. Insights into gemcitabine resistance and the potential for therapeutic monitoring. Metabolomics. 2018;14(12):156.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Keun HC, Sidhu J, Pchejetski D, Lewis JS, Marconell H, Patterson M, et al. Serum molecular signatures of weight change during early breast cancer chemotherapy. Clin Cancer Res. 2009;15(21):6716–23.

    Article  CAS  PubMed  Google Scholar 

  59. Condray R, Dougherty GG Jr, Keshavan MS, Reddy RD, Haas GL, Montrose DM, et al. 3-Hydroxykynurenine and clinical symptoms in first-episode neuroleptic-naive patients with schizophrenia. Int J Neuropsychopharmacol. 2011;14(6):756–67.

    Article  CAS  PubMed  Google Scholar 

  60. Clayton TA, Baker D, Lindon JC, Everett JR, Nicholson JK. Pharmacometabonomic identification of a significant host-microbiome metabolic interaction affecting human drug metabolism. Proc Natl Acad Sci U S A. 2009;106(34):14728–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Woodcock J, Woosley R. The FDA critical path initiative and its influence on new drug development. Annu Rev Med. 2008;59:1–12.

    Article  CAS  PubMed  Google Scholar 

  62. Abo R, Hebbring S, Ji Y, Zhu H, Zeng ZB, Batzler A, et al. Merging pharmacometabolomics with pharmacogenomics using ‘1000 Genomes’ single-nucleotide polymorphism imputation: selective serotonin reuptake inhibitor response pharmacogenomics. Pharmacogenet Genomics. 2012;22(4):247–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Oh J, Yi S, Gu N, Shin D, Yu KS, Yoon SH, et al. Utility of integrated analysis of pharmacogenomics and pharmacometabolomics in early phase clinical trial: a case study of a new molecular entity. Genomics Informa. 2018;16(3):52–8.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anas M. Abdel Rahman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Jacob, M., Abdel Rahman, A.M. (2023). Metabolomic Role in Personalized Medicine: An Update. In: Abdel Rahman, A.M. (eds) Clinical Metabolomics Applications in Genetic Diseases. Springer, Singapore. https://doi.org/10.1007/978-981-99-5162-8_10

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-5162-8_10

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-5161-1

  • Online ISBN: 978-981-99-5162-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics