Skip to main content

Abstract

Gellan gum is an anionic extracellular biodegradable microbial-derived polymer which finds application in food and biomedical and pharmaceutical industry. Gellan gum and its derivatives like LA (low acyl) and HA (high acyl) varieties have varied functional properties as thickening agents, stabilizers, emulsifiers and edible films. Apart from heat-sealing properties, biocompatibility and adherence properties, it shows and exhibits aroma retention, three-dimensional bioprinting capabilities and microbial sorption and is nontoxic in nature. However, gellan gum gels show poor mechanical properties such as lack in toughness. It has been approved as a hydro-colloidal agent and as a food additive, first by Japan and later in the United States and Europe, and sold as deacetylated and acetylated forms that differ in their structures and properties. Due to its biocompatibility and biodegradability, gellan is used in the food industry as an encapsulating agent, as a nutraceutical, in biochemical technologies, in pharmaceuticals and in medicine.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agnello S, Palumbo FS, Pitarresi G, Fiorica C, Giammona G (2018) Synthesis and evaluation of thermo-rheological behaviour and ionotropic crosslinking of new gellan gum-alkyl derivatives. Carbohydr Polym 185:73–84

    Article  CAS  PubMed  Google Scholar 

  • Akkineni A, Ahlfeld T, Funk A, Waske A, Lode A, Gelinsky M (2016) Highly concentrated alginate-gellan gum composites for 3D plotting of complex tissue engineering scaffolds. Polymers 8(5):170. https://doi.org/10.3390/polym8050170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Albert S, Mittal GS (2002) Comparative evaluation of edible coatings to reduce fat uptake in a deep-fried cereal product. Food Res Int 35(5):445–448

    Article  CAS  Google Scholar 

  • Altan Kamer DD, Gumus T, Palabiyik I, Demirci AS, Oksuz O (2021) Grape pomace as a promising source for gellan gum production. Food Hydrocoll 114(August 2020):106584. https://doi.org/10.1016/j.foodhyd.2020.106584

    Article  CAS  Google Scholar 

  • Anderson DM, Brydon WG, Eastwood MA (1988) The dietary effects of gellan gum in humans. Food Addit Contam 5(3):237–249

    Article  CAS  PubMed  Google Scholar 

  • Baird JK, Talashek TA, Chang H (1992) Gellan gum: effect of composition on gel properties. In: Philips GO, Williams PA, Wedlock DJ (eds) Gums and stabilisers for the food industry. Pergamon Press, Oxford, pp 479–487

    Chapter  Google Scholar 

  • Bajaj I, Singhal R (2007) Gellan gum in reducing oil uptake in sev, a legume based product during deep fat frying. Food Chem 104(4):1472–1477

    Article  CAS  Google Scholar 

  • Bajaj IB, Survase SA, Saudagar PS, Singhal RS (2007) Gellan gum: fermentative production, downstream processing and applications. Food Technol Biotechnol 45(4):341–354

    CAS  Google Scholar 

  • Balasubramanian R, Kim SS, Lee J, Lee J (2019) Effect of TiO2 on highly elastic, stretchable UV protective nanocomposite films formed by using a combination of k-carrageenan, xanthan gum and gellan gum. Int J Biol Macromol 123:1020–1027. https://doi.org/10.1016/j.ijbiomac.2018.11.151

    Article  CAS  PubMed  Google Scholar 

  • Banerjee S, Ravi R, Bhattacharya S (2013) Textural characterisation of gellan and agar based fabricated gels with carrot juice. LWT Food Sci Technol 53(1):255–261

    Article  CAS  Google Scholar 

  • Chalupa WF, Sanderson GR (1994) Process for preparing low-fat fried food. US Patent 5,372,829. Assignee: Merck & Co., Inc

    Google Scholar 

  • Chen Y, Xiong X, Liu X, Cui R, Wang C, Zhao G et al (2020) 3D bioprinting of shear-thinning hybrid bioinks with excellent bioactivity derived from gellan/alginate and thixotropic magnesium phosphate-based gels. J Mater Chem B 8(25):5500–5514. https://doi.org/10.1039/d0tb00060d

    Article  CAS  PubMed  Google Scholar 

  • Chesterman J, Zhang Z, Ortiz O, Goyal R, Kohn J (2020) Biodegradable polymers. In: Principles of tissue engineering. Elsevier, London, pp 317–342

    Chapter  Google Scholar 

  • Choudhary S, Sharma K, Kumar V, Bhatia JK, Sharma S, Sharma V (2020) Microwave-assisted synthesis of gum gellan-cl-poly(acrylic-co-methacrylic acid) hydrogel for cationic dyes removal. Polym Bull 77(9):4917–4935. https://doi.org/10.1007/s00289-019-02998-3

    Article  CAS  Google Scholar 

  • Coutinho DF, Sant SV, Shin H, Oliveira JT, Gomes ME, Neves NM et al (2010) Modified gellan gum hydrogels with tunable physical and mechanical properties. Biomaterials 31(29):7494–7502

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dartey CK (1993) Applications of gellan gum as a fining agent in alcoholic beverages. Res Disclosure 348:256

    CAS  Google Scholar 

  • Duran E, Costell E, Izquierdo L, Duran L (1994) Low sugar bakery jams with gellan gum—guar gum mixtures. Influence of composition on texture. Food Hydrocoll 8(3–4):373–381

    Article  CAS  Google Scholar 

  • Duxbury DO (1993) Fat reduction without adding fat replacers. Food Proc 54(5):68–70

    Google Scholar 

  • EFSA Panel on Food Additives and Nutrient Sources Added to Food (ANS), Younes M, Aggett P, Aguilar F, Crebelli R, Filipic M, Frutos MJ, Galtier P, Gott D, Gundert-Remy U, Kuhnle GG, Lambré C, Leblanc JC, Lillegaard IT, Moldeus P, Mortensen A, Oskarsson A, Stankovic I, Waalkens-Berendsen I, Woutersen RA, Wright M, Brimer L, Mosesso P, Christodoulidou A, Cascio C, Tard A, Lodi F, Dusemund B (2018) Re-evaluation of gellan gum (E 418) as food additive. EFSA J 16(6):e05296

    Google Scholar 

  • Forssell P, Lahtinen R, Lahelin M, Myllärinen P (2002) Oxygen permeability of amylose and amylopectin films. Carbohydr Polym 47(2):125–129

    Article  CAS  Google Scholar 

  • Giavasis I, Harvey LM, McNeil B (2000) Gellan gum. Crit Rev Biotechnol 20(3):177–211

    Article  CAS  PubMed  Google Scholar 

  • Gibson W (1997) Gellan gum. In: Imeson AP (ed) Thickening and gelling agents for food. Springer, Boston, pp 119–143

    Chapter  Google Scholar 

  • Gibson W, Sanderson GR (1997) Gellan gum. In: Imeson AP (ed) Thickening and gelling agents for foods, 2nd edn. Blackie, London, pp 119–143

    Chapter  Google Scholar 

  • Giese J (1995) Developments in beverage additives. Food Technol 49(9):63–65, 68–70, 72

    Google Scholar 

  • Guo N, Zhu G, Chen D, Wang D, Zhang F, Zhang Z (2020) Preparation and characterization of gellan gum–guar gum blend films incorporated with nisin. J Food Sci 85(6):1799–1804

    Article  CAS  PubMed  Google Scholar 

  • Hasheminya SM, Ebrahimzadeh-Mousavi SMA, Ehsani MR, Dehghannya J (2011) Effect of gellan hydrocolloid on rheological properties and stabilization of a fiber-enriched doogh. Food Res 21(2):179–193

    Google Scholar 

  • Hernández-García E, Vargas M, Chiralt A (2021) Thermoprocessed starch-polyester bilayer films as affected by the addition of gellan or xanthan gum. Food Hydrocoll 113(December 2020):106509. https://doi.org/10.1016/j.foodhyd.2020.106509

    Article  CAS  Google Scholar 

  • Huang Y, Singh PP, Tang J, Swanson BG (2004) Gelling temperatures of high acyl gellan as affected by monovalent and divalent cations with dynamic rheological analysis. Carbohydr Polym 56(1):27–33

    Article  CAS  Google Scholar 

  • Iglesias N, Galbis E, Romero-Azogil L, Benito E, Lucas R, García-Martín MG, De-Paz MV (2020) In-depth study into polymeric materials in low-density gastroretentive formulations. Pharmaceutics 12(7):1–44. https://doi.org/10.3390/pharmaceutics12070636

    Article  CAS  Google Scholar 

  • Ismail NA, Razali MH, Amin KAM (2017) Mechanical and physicochemical properties study on gellan gum thin film prepared using film casting method. AIP Conf Proc 1885. https://doi.org/10.1063/1.5002239

  • Iurcius CE, Savin A, Lungu C, Martin P, Popa M (2016) Gellan. Food applications. Cellulose Chem Technol 50(1):1–13

    Google Scholar 

  • Jung S, Oh HK, Kim MS, Lee KY, Park H, Kook MS (2020) Effect of gellan gum/tuna skin film in guided bone regeneration in artificial bone defect in rabbit calvaria. Materials 13(6):1–9. https://doi.org/10.3390/ma13061318

    Article  CAS  Google Scholar 

  • Kalia S, Roy Choudhury A (2019) Synthesis and rheological studies of a novel composite hydrogel of xanthan, gellan and pullulan. Int J Biol Macromol 137:475–482. https://doi.org/10.1016/j.ijbiomac.2019.06.212

    Article  CAS  PubMed  Google Scholar 

  • Kang D, Zhang HB, Nitta Y, Fang YP, Nishinari K (2015) Gellan. In: Ramawat K, Mérillon JM (eds) Polysaccharides. Springer, Cham. https://doi.org/10.1007/978-3-319-03751-6

    Chapter  Google Scholar 

  • Kang D, Zhang H, Nitta Y, Fang Y, Nishinari K (2021) Polysaccharides. Springer, Cham. https://doi.org/10.1007/978-3-319-03751-6

    Book  Google Scholar 

  • Laaman TR, Tye RI (1991) Application of gellan gum to meat systems. Res Disclosure 323:212

    Google Scholar 

  • Lara Lledó MI (2016) Antimicrobial packaging system for minimally processed fruit (January). https://riunet.upv.es/handle/10251/61388

  • Lee KY, Shim J, Lee HG (2004) Mechanical properties of gellan and gelatin composite films. Carbohydr Polym 56(2):251–254

    Article  CAS  Google Scholar 

  • Liang C, Hu X, Ni Y, Wu J, Chen F, Liao X (2006) Effect of hydrocolloids on pulp sediment, white sediment, turbidity and viscosity of reconstituted carrot juice. Food Hydrocoll 20(8):1190–1197

    Article  CAS  Google Scholar 

  • Madene A, Jacquot M, Scher J, Desobry S (2006) Flavour encapsulation and controlled release: a review. Int J Food Sci Technol 41(1):1–21. https://doi.org/10.1111/j.1365-2621.2005.00980.x

    Article  CAS  Google Scholar 

  • Maia FR, Correlo VM, Oliveira JM, Reis RL (2019) Natural origin materials for bone tissue engineering. In: Atala A, Lanza R, Mikos AG, Nerem R (eds) Principles of regenerative medicine, 3rd edn. Academic Press, London, pp 535–558

    Chapter  Google Scholar 

  • Manjunatha S, Gupta DKD (2006) Instrumental textural characteristics of restructured carrot cubes. Int J Food Prop 9(3):453–462

    Article  CAS  Google Scholar 

  • Mantaluta A, Cojocaru D, Savin C, Pasa R (2012) The testing of some organic supports for yeasts immobilization technology used in sparkling wine production, annals of the “AlexandruIoanCuza” University. Genet Mol Biol 12(4):81–85

    Google Scholar 

  • Milan J, Maleki G (2012) Hydrocolloids in food industry. In: Valdez B (ed) Food industrial processes: methods and equipment. InTech Europe, Croatia, pp 17–38

    Google Scholar 

  • Mohd Azam NAN, Amin KAM (2017) The physical and mechanical properties of gellan gum films incorporated Manuka honey as wound dressing materials. IOP Conf Ser Mater Sci Eng 209(1):012027. https://doi.org/10.1088/1757-899X/209/1/012027

    Article  Google Scholar 

  • Mohd SS, Abdullah MAA, Mat Amin KA (2016) Gellan gum/clay hydrogels for tissue engineering application: mechanical, thermal behavior, cell viability, and antibacterial properties. J Bioact Compat Polym 31(6):648–666. https://doi.org/10.1177/0883911516643106

    Article  CAS  Google Scholar 

  • Mousavian D, Mohammadi Nafchi A, Nouri L, Abedinia A (2021) Physicomechanical properties, release kinetics, and antimicrobial activity of activated low-density polyethylene and orientated polypropylene films by thyme essential oil active component. J Food Meas Charact 15(1):883–891. https://doi.org/10.1007/s11694-020-00690-z

    Article  Google Scholar 

  • Nakamura K, Tanaka Y, Sakurai M (1996) Dynamic mechanical properties of aqueous gellan solutions in the sol-gel transition region. Carbohydrpolym 30(2–3):101–108

    CAS  Google Scholar 

  • Norton IT (1992) Water in oil dispersion. European Patent Application 0473854A1

    Google Scholar 

  • Papageorgiou M, Kasapis S (1995) The effect of added sucrose and corn syrup on the physical properties of gellan—gelatin mixed gels. Food Hydrocoll 9(3):211–220

    Article  CAS  Google Scholar 

  • Patel KS, Vadalia KR, Patel JK (2014) Development and evaluation of in situ gelling system for treatment of periodontitis. Int J Pharm Tech Res 6(7):2102–2112

    CAS  Google Scholar 

  • Pliego-Arreaga R, Regalado C, Amaro-Reyes A, García-Almendárez BE (2013) Revista Mexicana de Ingeniería Química. Rev Mex Ing Quím 12(3):505–511

    CAS  Google Scholar 

  • Ramalingam C, Priya J, Mundra S (2014) Applications of microbial polysaccharides in food industry. Int J Pharm Sci Rev Res 27(1):322–324

    Google Scholar 

  • Rukmanikrishnan B, Ismail FRM, Manoharan RK, Kim SS, Lee J (2020a) Blends of gellan gum/xanthan gum/zinc oxide based nanocomposites for packaging application: rheological and antimicrobial properties. Int J Biol Macromol 148:1182–1189

    Article  CAS  PubMed  Google Scholar 

  • Rukmanikrishnan B, Ramalingam S, Rajasekharan SK, Lee J, Lee J (2020b) Binary and ternary sustainable composites of gellan gum, hydroxyethyl cellulose and lignin for food packaging applications: Biocompatibility, antioxidant activity, UV and water barrier properties. Int J Biol Macromol 153:55–62

    Article  CAS  PubMed  Google Scholar 

  • Saha D, Bhattacharya S (2010) Hydrocolloids as thickening and gelling agents in food: a critical review. J Food Sci Technol 47(6):587–597

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saha T, Masum ZU, Mondal SK, Hossain MS, Md. Abu Jobaer, R. I. S., & Fahad, T. (2018) Application of natural polymers as pharmaceutical excipients. Glob J Life Sci Biol Res Gedik 4(1):1–8. https://doi.org/10.24105/gjlsbr.2018.4.2

    Article  Google Scholar 

  • Sanderson GR (1990) Gellan gum. In: Harris P (ed) Food gels, 2nd edn. Elsevier Applied Science, London, pp 210–232

    Google Scholar 

  • dos Santos JWS, de Fátima Silva M, Concha VOC, Yoshida CMP (2020) Diffusion process through biodegradable polymer films. In: Biopolymer membranes and films. Elsevier, Amsterdam, pp 97–118. https://doi.org/10.1016/b978-0-12-818134-8.00004-3

    Chapter  Google Scholar 

  • Sapper M, Talens P, Chiralt A (2019) Improving functional properties of cassava starch-based films by incorporating xanthan, gellan, or pullulan gums. Int J Polym Sci 2019(6):1–9. https://doi.org/10.1155/2019/5367164

    Article  CAS  Google Scholar 

  • Sapra P, Patel D, Soniwala M, Chavda J (2013) Development and optimization of in situ periodontal gel containing levofloxacin for the treatment of periodontal diseases. J Sci Innov Res 2(23):607–626

    Google Scholar 

  • Sutherland IW (2005) Biotechnology of microbial polysaccharides in food. In: Shetty K, Paliyath G, Pometto A, Levin RE (eds) Food biotechnology, 2nd edn. Taylor & Francis, Boca Raton, pp 193–220

    Google Scholar 

  • Sworna G, Stouby L (2020) Gellan gum. In: Philips GO, Williams PA (eds) Handbook of hydrocolloids, Food science, technology and nutrition, 3rd edn. Woodhead Publishing, London, pp 855–885. https://doi.org/10.1016/C2018-0-04245-0

    Chapter  Google Scholar 

  • Tang J, Mao R, Tung MA, Swanson BG (2001) Gelling temperature, gel clarity and texture of gellan gels containing fructose or sucrose. Carbohydr Polym 44(3):197–209

    Article  CAS  Google Scholar 

  • Tetsuguchi M, Nomura S, Katayama M, Sugawa-Katayama Y (1997) Effects of curdlan and gellan gum on the surface structure of intestinal mucosa in rats. J Nutr Sci Vitaminol (Tokyo) 43(5):515–527

    Article  CAS  PubMed  Google Scholar 

  • Xiao G, Zhu Y, Wang L, You Q, Huo P, You Y (2011) Production and storage of edible film using gellan gum. Procedia Environ Sci 8:756–763

    Article  CAS  Google Scholar 

  • Xu X, Li B, Kennedy JF, Xie BJ, Huang M (2007) Characterization of konjac glucomannan-gellan gum blend films and their suitability for release of nisin incorporated therein. Carbohydr Polym 70(2):192–197. https://doi.org/10.1016/j.carbpol.2007.03.017

    Article  CAS  Google Scholar 

  • Yuguchi Y, Mimura M, Kitamura S, Urakawa H, Kajiwara K (1993) Structural characteristics of gellan in aqueous solution. Food Hydrocoll 7(5):373–385

    Article  CAS  Google Scholar 

  • Zhang W, Luan D, Tang J, Sablani SS, Rasco B, Lin H, Liu F (2015) Dielectric properties and other physical properties of low-acyl gellan gel as relevant to microwave assisted pasteurization process. J Food Eng 149:195–203. https://doi.org/10.1016/j.jfoodeng.2014.10.014

    Article  CAS  Google Scholar 

  • Zhang X, Liu D, Jin TZ, Chen W, He Q, Zou Z et al (2021) Preparation and characterization of gellan gum-chitosan polyelectrolyte complex films with the incorporation of thyme essential oil nanoemulsion. Food Hydrocoll 114(September 2020):106570. https://doi.org/10.1016/j.foodhyd.2020.106570

    Article  CAS  Google Scholar 

  • Zhu G, Sheng L, Li J, Tong Q (2013) Preparation and characterisation of gellan/pullulan composite blend films. Int J Food Sci Technol 48(12):2683–2687. https://doi.org/10.1111/ijfs.12235

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aparna Agarwal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Agarwal, K., Rubeka, Jain, S., Heirangkhongjam, M.D., Agarwal, A. (2024). Gellan Gum-Based Films. In: Amin, T., Naik, H.R., Hussain, S.Z., Wani, S.M. (eds) Polysaccharide Based Films for Food Packaging: Fundamentals, Properties and Applications. Springer, Singapore. https://doi.org/10.1007/978-981-99-4898-7_8

Download citation

Publish with us

Policies and ethics