Skip to main content

Role of Microorganisms in the Food Industry

  • Chapter
  • First Online:
Food Microbial Sustainability
  • 463 Accesses

Abstract

Microorganisms play a crucial role in the food industry as they contribute to the production, spoilage, and preservation of various food products. Dairy products like cheese, yogurt, and fermented milk rely on microorganisms to transform milk into delicious and nutritious foods. Similarly, fermented foods like sourdough bread and meats like salami also require microorganisms for production. In addition to these traditional uses, microorganisms are now being utilized to make wine, beer, and other beverages. They are also used to produce chocolate, culinary colors, and probiotics that promote human health. With the world’s population increasing, it is crucial to find innovative ways to use microbes to generate wholesome food and deal with the current food supply crisis. However, while microorganisms are essential for food production, they can also cause spoilage, rendering the food unfit for human consumption. This is particularly true for bakery goods, which are prone to physical, chemical, and microbiological deterioration. Chemical and physical deterioration can decrease the shelf life of intermediate and low-moisture bread goods, while high-moisture products are more susceptible to microbiological spoilage by molds, bacteria, and yeasts. Therefore, it is vital to understand the role of microorganisms in food production, spoilage, and preservation. This chapter will discuss the significance of microorganisms in dairy and bakery goods and how they benefit the food industry. By studying their role in food production, we can develop effective strategies to preserve and extend the shelf life of bakery products, ensuring they remain safe and healthy for human consumption.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abellana, M., Magri, X., Sanchis, V., & Ramos, A. J. (1999). Water activity and temperature effects on growth of Eurotium amstelodami, E. chevalier and E. herbariorum on a sponge cake analogue. International Journal of Microbiology, 52, 97–103.

    Article  CAS  Google Scholar 

  • Abellana, M., Sanchis, V., & Ramos, A. J. (2001). Effect of water activity and temperature on growth of three Penicillium species and Aspergillus flavus on a sponge cake analogue. International Journal of Food Microbiology, 71, 151–157.

    Article  CAS  PubMed  Google Scholar 

  • Abu-Salem, F. M., Mohamed, R., Gibriel, A., & Rasmy, N. M. (2014). Levels of some antinutritional factors in Tempeh produced from some legumes and jojobas seeds. International Scholarly and Scientific Research & Innovation, 8, 296–301.

    Google Scholar 

  • Acheson, D., Bresee, J. S., Widdowson, M. A., Monroe, S. S., & Glass, R. I. (2002). Foodborne viral gastroenteritis: Challenges and opportunities. Clinical Infectious Diseases, 35(6), 748–753.

    Article  Google Scholar 

  • Adams, M. R., & Hall, C. J. (1988). Growth inhibition of food-borne pathogens by lactic and acetic acids and their mixtures. International Journal of Food Science & Technology, 23(3), 287–292.

    Google Scholar 

  • Akkerman, R., Farahani, P., & Grunow, M. (2010). Quality, safety and sustainability in food distribution: A review of quantitative operations management approaches and challenges. OR Spectrum, 32(4), 863–904.

    Article  Google Scholar 

  • Arroyo, M., Aldred, D., & Magan, N. (2008). Environmental factors and weak organic acid interactions have differential effects on control of growth and ochratoxin A production by Penicillium verrucosum isolates in bread. International Journal of Food Microbiology, 98, 223–231.

    Article  Google Scholar 

  • Aso, Y., Akazan, H., & BLP Group. (1992). Prophylactic effect of a Lactobacillus casei preparation on the recurrence of superficial bladder cancer. Urologia Internationalis, 49, 125–129.

    Article  CAS  PubMed  Google Scholar 

  • Attaie, R., Whalen, P. J., Shahani, K. M., & Amer, N. A. (1987). Inhibition of growth of staphylococcus aureus during production ofacidophilus yogurt. Journal of Food Protection, 50(3), 224–228.

    Google Scholar 

  • Aung, M. M., & Chang, Y. S. (2014). Traceability in a food supply chain: Safety and quality perspectives. Food Control, 39, 172–184.

    Article  Google Scholar 

  • Ballongue, J., Grill, J. P., & Baratte-Euloge, P. (1993). Action sur la flore intestinale de laits fermentes au Bifidobacterium. Le Lait, 73, 249–256.

    Article  Google Scholar 

  • Bove, P., Russo, P., Capozzi, V., Gallone, A., Spano, G., & Fiocco, D. (2013). Lactobacillus plantarum passage through an oro-gastro-intestinal tract simulator: Carrier matrix effect and transcriptional analysis of genes associated to stress and probiosis. Microbiological Research, 168(6), 351–359.

    Article  CAS  PubMed  Google Scholar 

  • Caplice, E., & Fitzgerald, G. F. (1999). Food fermentations: Role of microorganisms in food production and preservation. International Journal of Food Microbiology, 50(1–2), 131–149.

    Article  CAS  PubMed  Google Scholar 

  • Chamberlain, N. (1993). Mold growth on cake. Biscuit Maker and Plant Baker, 14, 961–964.

    Google Scholar 

  • Corthier, G., Dubos, F., & Raibaud, P. (1985). Applied and Environmental Microbiology, 40, 250.

    Article  Google Scholar 

  • De Simone, C., Clardi, A., Grassi, A., Lambert, G. S., Tantzoglou, S., Trinchieri, V., Moretti, S., & Jirillo, E. (1992). Effect of Bifidobacterium bifidum and Lactobacillus acidophilus on gut mucosa and peripherical blood B lymphocytes. Immunopharmacology and Immunotoxicology, 14, 331–340.

    Article  PubMed  Google Scholar 

  • Denariaz. (1994). Fermented milks and health benefits. Nutrition Newsletter IDF, 141, 32–35.

    Google Scholar 

  • Derrien, M., & van Hylckama Vlieg, J. E. (2015). Fate, activity, and impact of ingested bacteria within the human gut microbiota. Trends in Microbiology, 23(6), 354–366.

    Article  CAS  PubMed  Google Scholar 

  • Desrosier, N. W. (2006). The technology of food preservation (pp. 110–148). Avi Publishing.

    Google Scholar 

  • Dewitt O. (1985). Thesis in Medecin Paris No 162.

    Google Scholar 

  • Dickson, J. S. (2001). Survival of selected indicator and pathogenic bacteria in refrigerator pizzas. Journal of Food Protection, 50, 59–86.

    Google Scholar 

  • Duval-Hflah, Y., Chappuis, J. P., Ducluzeau, R., & Raibaud, P. (1983). Progress in Food & Nutrion Sciences, 129, 213.

    Google Scholar 

  • Filannino, P., Bai, Y., Di Cagno, R., Gobbetti, M., & Gänzle, M. G. (2015). Metabolism of phenolic compounds by Lactobacillus spp. during fermentation of cherry juice and broccoli puree. Food Microbiology, 46, 272–279.

    Article  CAS  PubMed  Google Scholar 

  • Flint, J. A., Van Duynhoven, Y. T., Angulo, F. J., DeLong, S. M., Braun, P., Kirk, M., et al. (2005). Estimating the burden of acute gastroenteritis, foodborne disease, and pathogens commonly transmitted by food: An international review. Clinical Infectious Diseases, 41(5), 698–704.

    Article  PubMed  Google Scholar 

  • Fox, P. F. (1993). Cheese: An overview. In P. F. Fox (Ed.), Cheese: Chemistry, physics and microbiology - 1, 2 (pp. 1–36). Chapman and Hall.

    Google Scholar 

  • Gram, L., Ravn, L., Rasch, M., Bruhn, J. B., Christensen, A. B., & Givskov, M. (2002). Food spoilage—Interactions between food spoilage bacteria. International Journal of Food Microbiology, 78(1–2), 79–97.

    Article  PubMed  Google Scholar 

  • Guynot, M. E., Marin, S., Sanchis, V., & Ramos, A. J. (2003). Modified atmosphere packaging for prevention of mold spoilage of bakery products with different pH and water activity levels. Journal of Food Production, 10, 1864–1872.

    Article  Google Scholar 

  • Havenaar, R., Marteau, P., & Huis in’t Veld, J. H. J. (1994). Survival of lactobacilli strains in a dynamic computer controlled in vitro model of the gastrointestinal tract poster session. Lactic, 94, 7–9.

    Google Scholar 

  • Hickey, C. S. (1998). Sorbate spray application for protecting yeast-raised bakery products. Baker’s Digest, 54, 4–7.

    Google Scholar 

  • Hilton, E., Isenberg, H. D., Alperstein, P., France, K., & Borentein, M. T. (1992). Ingestion of yoghurt containing Lactobacillus acidophilus as prophylaxis for Candida vaginitis. Annals of Internal Medicine, 116, 353.

    Article  CAS  PubMed  Google Scholar 

  • Huis in’t Veld, J. H. J, Hose H., Schaafsma G. J., Silla H., & Smith J. E. (1989). Health aspect of food biotechnology. In 91 bis Final Seminar COST subgroup 2 “Food Biotechnology”, October 3–6, 1989.

    Google Scholar 

  • Jarvis, B. (2001). Mold spoilage of food. Process Biochemistry, 7, 11–14.

    Google Scholar 

  • Kaila, M., Isolauri, E., Soppi, E., Virtamen, E., Laine, S., & Arvilommi, H. (1992). Enhancement of the circulating antibody secreting cell response in human diarrhea by a human Lactobacillus strain. Pediatric Research, 32, 141–144.

    Article  CAS  PubMed  Google Scholar 

  • Knight, R. A., & Menlove, E. M. (2006). Effect of the bread baking process on destruction of certain mold spores. Journal of the Science of Food and Agriculture, 10, 653–660.

    Google Scholar 

  • Korhonen, H. (1994). Bioactive compounds in fermented milks. Nutrition Newsletter IDF, 3(141), 10–11.

    Google Scholar 

  • Kotz, C. M., Peterson, L. R., Moody, J. A., Saviano, D. A., & Levitt, M. D. (1990). In vitro antibacterial effect of yogurt on escherichia coli. Digestive Diseases and Sciences, 35, 630–637.

    Google Scholar 

  • Kyzlink, V. (2001). Principles of food preservation (pp. 247–370). Elsevier.

    Google Scholar 

  • Laatikainen, R., Koskenpato, J., Hongisto, S. M., Loponen, J., Poussa, T., Hillilä, M., & Korpela, R. (2016). Randomised clinical trial: Low-FODMAP rye bread vs. regular rye bread to relieve the symptoms of irritable bowel syndrome. Alimentary Pharmacology & Therapeutics, 44(5), 460–470.

    Article  CAS  Google Scholar 

  • Legan, J. D., & Voysey, P. A. (1981). Yeast spoilage of bakery products and ingredients. Journal of Applied Bacteriology, 70, 361–371.

    Article  Google Scholar 

  • Ling, W. H., Korpela, R., Mykkanen, H., Saiminen, S., & Hanninen, O. (1994). Lactobacillus strain GG supplementation decreases colonic hydrolytic and reductive enzyme activities in healthy female adults. The Journal of Nutrition, 124, 18–23.

    Article  CAS  PubMed  Google Scholar 

  • M’hir, S., Mondher, M., & Hamd, M. (2007). Microflora distribution and species ratio of Tunisian fermented doughs for bakery industry. African Journal of Food Microbiology, 6(18), 2122–2129.

    Google Scholar 

  • Malkki, Y., & Rauha, O. (2000). Mold inhibition by aerosols. Baker’s Digest, 52, 47–50.

    Google Scholar 

  • Marco, M. L., Heeney, D., Binda, S., Cifelli, C. J., Cotter, P. D., Foligné, B., et al. (2017). Health benefits of fermented foods: Microbiota and beyond. Current Opinion in Biotechnology, 44, 94–102.

    Article  CAS  PubMed  Google Scholar 

  • Marteau, P., Pochart, P., Flourie, B., & Rambeau, J. C. (1990). Effect of chronic ingestion of fermented dairy product containing Lactobacillus acidophilus and Bifidobacterium bifidum on metabolic activities of the colonic flora of humans. The American Journal of Clinical Nutrition, 52, 685–688.

    Article  CAS  PubMed  Google Scholar 

  • Mazhar, S., Yasmeen, R., Chaudhry, A., Summia, K., Hussain, I., Amjad, S., & Ali, E. (2022). Role of microorganisms in modern food industry. International Journal of Food Science & Technology, 4, 65–77.

    Google Scholar 

  • Membre, J. M., Kubaczka, M., & Chene, C. (2001). Growth rate and growth-no-growth interface of Penicillium brevicompactum as functions of pH and preservative acids. Food Microbiology, 18, 531–538.

    Article  CAS  Google Scholar 

  • Mentes, O., Ercan, R., & Ajcekuj, M. (2005). Inhibitory activity of two Lactobacillus strain, isolated from sourdough, against rope-forming Bacillus strain. Journal of Food Microbiology, 18, 359–363.

    Google Scholar 

  • Mishra, L. K. (2013). Role of microorganisms in food. Recent advances in microbiology, 215.

    Google Scholar 

  • Perdigon, G., Macias, M. E. N., Albarez, S., Oliver, G., & Ruiz Holando, A. P. (1988). Immunology, 63, 17.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pessione, E., & Cirrincione, S. (2016). Bioactive molecules released in food by lactic acid bacteria: Encrypted peptides and biogenic amines. Frontiers in Microbiology, 7, 876.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ponte, J. G., Payne, J. D., & Ingelin, M. E. (1993). The shelf life of bakery foods. In G. Charalambous (Ed.), Shelf life of foods and beverages (pp. 1143–1197). Elsevier Science.

    Google Scholar 

  • Rezac, S., Kok, C. R., Heermann, M., & Hutkins, R. (2018). Fermented foods as a dietary source of live organisms. Frontiers in Microbiology, 9, 1785.

    Article  PubMed  PubMed Central  Google Scholar 

  • Romond, M. B., Romond, C., Beerens, H., & Bourloux, P. (1989). The in vivo effect of dietary buffering capacity on thebifidogenic activity of human milk oligosaccharides. Microbial Ecology in Health and Disease, 2(1), 29–36.

    Google Scholar 

  • Rosenkvist, H., & Hansen, A. (1995). Contamination profiles and characterization of bacillus species in wheat bread and raw materials for bread production. International Journal of Food Microbiology, 26, 353–363.

    Article  CAS  PubMed  Google Scholar 

  • Salazar, N., Gueimonde, M., De Los Reyes-Gavilán, C. G., & Ruas-Madiedo, P. (2016). Exopolysaccharides produced by lactic acid bacteria and bifidobacteria as fermentable substrates by the intestinal microbiota. Critical Reviews in Food Science and Nutrition, 56(9), 1440–1453.

    Article  CAS  PubMed  Google Scholar 

  • Samapundo, S., Deschuyfteleer, N., & Van Laere, D. (2010). Effect of NaCl reduction and replacement on the growth of fungi important to the spoilage of bread. Journal of Food Microbiology, 27, 749–756.

    Article  CAS  PubMed  Google Scholar 

  • Valerio, F., Favilla, M., De Bellis, P., Sisto, A., de Candia, S., & Lavermicoca, P. (2009). Antifungal activity of strains of Lactic acid bacteria isolated from semolina ecosystem against Penicillium roqueforti, Aspergillus niger and Endomyces fibuliger contaminating bakery products. Systematic and Applied Microbiology, 32, 438–448.

    Article  CAS  PubMed  Google Scholar 

  • Voysey, P. A., & Hommond, J. C. (1993). Reduced additive bread-making tech. In J. Smith (Ed.), Technology of reduced, additive foods (pp. 80–94). Blackie, Academic and Professional.

    Chapter  Google Scholar 

  • Vytrasova, J., Pribanova, P., & L. Mar vanova. (2002). Occurrence of Xerophilic fungi in bakery production. International Journal of Food Microbiology, 72, 91–96.

    Article  CAS  PubMed  Google Scholar 

  • Yann, D., & Pauline, G. (2014). Usefulness of natural starters in food industry: The example of cheeses and bread. Food and Nutrition Sciences, 2014, 1679.

    Article  Google Scholar 

  • Yasui, H., Nagaoka, A. A., Mike, K., Hayakawa, K., & Ohwaki, M. (1992). Detection of Bifidobacterium strains that induce large quantities of logA. Microbial Ecology in Health and Disease, 5, 155–162.

    Article  Google Scholar 

  • Zhang, C., Derrien, M., Levenez, F., Brazeilles, R., Ballal, S. A., Kim, J., et al. (2016). Ecological robustness of the gut microbiota in response to ingestion of transient food-borne microbes. The ISME Journal, 10(9), 2235–2245.

    Article  PubMed  PubMed Central  Google Scholar 

  • Zoppi, G., Deganello, A., Benoni, G., Saccomani, F., & Benoni, G. (1982). Oral bacteriotherapy in clinical practice: I. The use of different preparations in infants treated with antibiotics. European Journal of Pediatrics, 139(1), 18–21.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kaur, N., Singh, A. (2023). Role of Microorganisms in the Food Industry. In: Karnwal, A., Mohammad Said Al-Tawaha, A.R. (eds) Food Microbial Sustainability. Springer, Singapore. https://doi.org/10.1007/978-981-99-4784-3_1

Download citation

Publish with us

Policies and ethics