Skip to main content

Sustainable Use of Microbes in Beverage Production

  • Chapter
  • First Online:
Food Microbial Sustainability

Abstract

Microorganisms are significant in the deterioration and spoiling of foods and beverages. The traits of spoiled food include unpleasing flavor, odor, and texture. Microbes are significant in preparing fermented foods and drinks at home and in industrial sectors, even though they are harmful. To ferment dairy products and create alcoholic drinks, microbes are utilized. Microbes are necessary to create dairy products, including yogurt, curd, sour cream, buttermilk, and cheese. Fermented foods, probiotics, and alcoholic beverages are gaining popularity because of their delicious and healthful properties. This chapter highlights the numerous microorganisms employed in the industrial sector of food and beverage manufacturing and demonstrates the advantages of utilizing the following bacteria in the beverage industry.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Agrawal, G. K., Timperio, A. M., Zolla, L., Bansal, V., Shukla, R., & Rakwal, R. (2013). Biomarker discovery and applications for foods and beverages: Proteomics to nanoproteomics. Journal of Proteomics, 93, 74–92. https://doi.org/10.1016/j.jprot.2013.04.014

    Article  CAS  PubMed  Google Scholar 

  • Akpinar-Bayizit, A., Yilmaz-Ersan, L., & Ozcan, T. (2010). Determination of boza’s organic acid composition as it is affected by raw material and fermentation. International Journal of Food Properties, 13(3), 648–656.

    Article  CAS  Google Scholar 

  • Ali, A. A. (2010). Beneficial role of lactic acid bacteria in food preservation and human health: A review. Research Journal of Microbiology, 5(12), 1213–1221.

    Article  Google Scholar 

  • Amoutzopoulos, B., Löker, G. B., Samur, G., Çevikkalp, S. A., Yaman, M., Köse, T., & Pelvan, E. (2013). Effects of a traditional fermented grape-based drink ‘hardaliye’ on antioxidant status of healthy adults: A randomized controlled clinical trial. Journal of the Science of Food and Agriculture, 93(14), 3604–3610.

    Article  CAS  PubMed  Google Scholar 

  • Anandharaj, M., Sivasankari, B., & Rani, R. P. (2020). Corrigendum to “effects of probiotics, prebiotics, and synbiotics on hypercholesterolemia: A review”. Chinese Journal of Biology, 2020, 1–8.

    Article  Google Scholar 

  • Arqués, J. L., Rodríguez, E., Langa, S., Landete, J. M., & Medina, M. (2015). Antimicrobial activity of lactic acid bacteria in dairy products and gut: Effect on pathogens. BioMed Research International, 2015, 584183.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ashaolu, T. J. (2019). A review on selection of fermentative microorganisms for functional foods and beverages: The production and future perspectives. International Journal of Food Science & Technology, 54(8), 2511–2519.

    Article  CAS  Google Scholar 

  • Awojobi, K., Adeyemo, S., & Sanusi, O. (2016). Biosynthesis of antimicrobial compounds by lactic acid bacteria and its use as biopreservative in pineapple juice. Frontiers in Science, 6(1), 17–24.

    Google Scholar 

  • Bali, V., Panesar, P. S., Bera, M. B., & Kennedy, J. F. (2016). Bacteriocins: Recent trends and potential applications. Critical Reviews in Food Science and Nutrition, 56(5), 817–834.

    Article  CAS  PubMed  Google Scholar 

  • Bangar, S. P., Suri, S., Trif, M., & Ozogul, F. (2022). Organic acids production from lactic acid bacteria: A preservation approach. Food Bioscience, 46, 101615.

    Article  Google Scholar 

  • Bigliardi, B., & Galati, F. (2013). Innovation trends in the food industry: The case of functional foods. Trends in Food Science & Technology, 31(2), 118–129.

    Article  CAS  Google Scholar 

  • Bintsis, T. (2018). Lactic acid bacteria: Their applications in foods. Journal of Bacteriology & Mycology, 6(2), 89–94.

    Google Scholar 

  • Chambers, P. J., & Pretorius, I. S. (2010). Fermenting knowledge: The history of winemaking, science and yeast research. EMBO Reports, 11(12), 914–920.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Champagne, C. P., da Cruz, A. G., & Daga, M. (2018). Strategies to improve the functionality of probiotics in supplements and foods. Current Opinion in Food Science, 22, 160–166.

    Article  Google Scholar 

  • Corbo, M. R., Bevilacqua, A., Petruzzi, L., Casanova, F. P., & Sinigaglia, M. (2014). Functional beverages: The emerging side of functional foods: Commercial trends, research, and health implications. Comprehensive Reviews in Food Science and Food Safety, 13(6), 1192–1206.

    Article  CAS  Google Scholar 

  • Cousin, F. J., Le Guellec, R., Schlusselhuber, M., Dalmasso, M., Laplace, J.-M., & Cretenet, M. (2017). Microorganisms in fermented apple beverages: Current knowledge and future directions. Microorganisms, 5(3), 39.

    Article  PubMed  PubMed Central  Google Scholar 

  • Crowley, S., Mahony, J., & van Sinderen, D. (2013). Current perspectives on antifungal lactic acid bacteria as natural bio-preservatives. Trends in Food Science & Technology, 33(2), 93–109.

    Article  CAS  Google Scholar 

  • De Chiara, M., Barré, B. P., Persson, K., Irizar, A., Vischioni, C., Khaiwal, S., et al. (2022). Domestication reprogrammed the budding yeast life cycle. Nature Ecology & Evolution, 6(4), 448–460.

    Article  Google Scholar 

  • De Roos, J., & De Vuyst, L. (2018). Acetic acid bacteria in fermented foods and beverages. Current Opinion in Biotechnology, 49, 115–119.

    Article  PubMed  Google Scholar 

  • Di Cagno, R., Coda, R., De Angelis, M., & Gobbetti, M. (2013). Exploitation of vegetables and fruits through lactic acid fermentation. Food Microbiology, 33(1), 1–10.

    Article  PubMed  Google Scholar 

  • Fatima, D., & Fernanda, R. L. (2016). Characterization of bacteriocin produced by Lactobacillus brevis isolated from traditional fermented tomatoes juice. Scientific Agriculture, 15(3), 401–408.

    CAS  Google Scholar 

  • Fayemi, O. E., Akanni, G. B., Sobowale, S. S., Oelofse, A., & Buys, E. M. (2023). Potential for increasing folate contents of traditional African fermented sorghum gruel (Motoho) using presumptive probiotic lactic acid bacteria. Journal of Food Composition and Analysis, 115, 104850. https://doi.org/10.1016/j.jfca.2022.104850

    Article  CAS  Google Scholar 

  • Fleet, M., & Rahman, P. K. (2017). Probiotics and their health benefits. In Microbial functional foods and nutraceuticals (pp. 267–279). Wiley.

    Chapter  Google Scholar 

  • Ghaffar, T., Irshad, M., Anwar, Z., Aqil, T., Zulifqar, Z., Tariq, A., et al. (2014). Recent trends in lactic acid biotechnology: A brief review on production to purification. Journal of Radiation Research and Applied Sciences, 7(2), 222–229.

    Article  CAS  Google Scholar 

  • Giraffa, G., Chanishvili, N., & Widyastuti, Y. (2010). Importance of lactobacilli in food and feed biotechnology. Research in Microbiology, 161(6), 480–487.

    Article  PubMed  Google Scholar 

  • Granato, D., Branco, G. F., Cruz, A. G., Faria, J. A. F., & Shah, N. P. (2010). Probiotic dairy products as functional foods. Comprehensive Reviews in Food Science and Food Safety, 9(5), 455–470.

    Article  CAS  PubMed  Google Scholar 

  • Hashemi, M., Mousavi, S., Razavi, S., & Shojaosadati, S. (2011). Mathematical modeling of biomass and α-amylase production kinetics by Bacillus sp. in solid-state fermentation based on solid dry weight variation. Biochemical Engineering Journal, 53(2), 159–164.

    Article  CAS  Google Scholar 

  • Huang, H., Qureshi, N., Chen, M.-H., Liu, W., & Singh, V. (2015). Ethanol production from food waste at high solids content with vacuum recovery technology. Journal of Agricultural and Food Chemistry, 63(10), 2760–2766.

    Article  CAS  PubMed  Google Scholar 

  • Hugenholtz, J. (2013). Traditional biotechnology for new foods and beverages. Current Opinion in Biotechnology, 24(2), 155–159.

    Article  CAS  PubMed  Google Scholar 

  • Jargin, S. V. (2009). Kvass: A possible contributor to chronic alcoholism in the former Soviet Union—Alcohol content should be indicated on labels and in advertising. Alcohol & Alcoholism, 44(5), 529.

    Article  Google Scholar 

  • Kavitake, D., Kandasamy, S., Devi, P. B., & Shetty, P. H. (2018). Recent developments on encapsulation of lactic acid bacteria as potential starter culture in fermented foods—A review. Food Bioscience, 21, 34–44.

    Article  CAS  Google Scholar 

  • Laureys, D., & De Vuyst, L. (2014). Microbial species diversity, community dynamics, and metabolite kinetics of water kefir fermentation. Applied and Environmental Microbiology, 80(8), 2564–2572.

    Article  PubMed  PubMed Central  Google Scholar 

  • Malakar, S., Paul, S. K., & Jolvis Pou, K. R. (2020a). 1—Biotechnological interventions in beverage production. In A. M. Grumezescu & A. M. Holban (Eds.), Biotechnological progress and beverage consumption (pp. 1–37). Academic Press.

    Google Scholar 

  • Malakar, S., Paul, S. K., & Pou, K. J. (2020b). Biotechnological interventions in beverage production. In Biotechnological progress and beverage consumption (pp. 1–37). Elsevier.

    Google Scholar 

  • Marsh, A. J., Hill, C., Ross, R. P., & Cotter, P. D. (2014). Fermented beverages with health-promoting potential: Past and future perspectives. Trends in Food Science & Technology, 38(2), 113–124.

    Article  CAS  Google Scholar 

  • Marshall, E., & Mejia, D. (2011). Traditional fermented food and beverages for improved livelihoods (FAO diversification booklet 21). FAO, FIAT PANIS.

    Google Scholar 

  • Maryam, B. M., Datsugwai, M. S. S., & Shehu, I. (2017). The role of biotechnology in food production and processing. Industrial Engineering, 1(1), 24–35.

    Google Scholar 

  • Nain, N., Kumari, K. G., Haridasan, H., & Sharma, S. G. (2020). Microbes in food and beverage industry. In Microbial diversity, interventions and scope (pp. 249–258). Springer.

    Chapter  Google Scholar 

  • Özer, B., & Kırmacı, H. A. (2011). Technological and health aspects of probiotic cheese. In Cheese: Types, nutrition and consumption. Marcel and Dekker.

    Google Scholar 

  • Panesar, P. S., Kumari, S., & Panesar, R. (2013). Biotechnological approaches for the production of prebiotics and their potential applications. Critical Reviews in Biotechnology, 33(4), 345–364.

    Article  CAS  PubMed  Google Scholar 

  • Papagianni, M. (2016). Food fermentation and production of biopreservatives. In Handbook of animal-based fermented food and beverage technology (pp. 126–141). CRC Press.

    Google Scholar 

  • Paul, S. K., Dutta, H., Mahanta, C. L., & Kumar, G. P. (2014). Process standardization, characterization and storage study of a sweet potato (Ipomoea batatas L.) wine. International Food Research Journal, 21(3), 1113.

    Google Scholar 

  • Paul, S. K., & Sahu, J. K. (2014). Process optimization and quality analysis of carambola (Averrhoa carambola L.) wine. International Journal of Food Engineering, 10(3), 457–465.

    Article  CAS  Google Scholar 

  • Rahman, N., Xiaohong, C., Meiqin, F., & Mingsheng, D. (2009). Characterization of the dominant microflora in naturally fermented camel milk shubat. World Journal of Microbiology and Biotechnology, 25(11), 1941–1946. https://doi.org/10.1007/s11274-009-0092-5

    Article  Google Scholar 

  • Rani, P., Saini, N. K., Gagneja, A., & Kaur, M. (2016). Biopreservation of apple and pomegranate juice using bacteriocin of Lactobacillus acidophilus NCDC 343. Emergent Life Sciences Research, 2, 43–49.

    Google Scholar 

  • Rocha, M. A. M., Coimbra, M. A., & Nunes, C. (2017). Applications of chitosan and their derivatives in beverages: A critical review. Current Opinion in Food Science, 15, 61–69.

    Article  Google Scholar 

  • Saad, N., Delattre, C., Urdaci, M., Schmitter, J.-M., & Bressollier, P. (2013). An overview of the last advances in probiotic and prebiotic field. LWT-Food Science and Technology, 50(1), 1–16.

    Article  CAS  Google Scholar 

  • Saqib, A. A., Hassan, M., Khan, N. F., & Baig, S. (2010). Thermostability of crude endoglucanase from Aspergillus fumigatus grown under solid state fermentation (SSF) and submerged fermentation (SmF). Process Biochemistry, 45(5), 641–646.

    Article  CAS  Google Scholar 

  • Sathe, G. B., & Mandal, S. (2016). Fermented products of India and its implication: A review. Asian Journal of Dairy and Food Research, 35(1), 1–9.

    Article  Google Scholar 

  • Sekhon, B. S., & Jairath, S. (2010). Prebiotics, probiotics and synbiotics: An overview. Journal of Pharmaceutical Education & Research, 1(2).

    Google Scholar 

  • Shiby, V., & Mishra, H. (2013). Fermented milks and milk products as functional foods—A review. Critical Reviews in Food Science and Nutrition, 53(5), 482–496.

    Article  CAS  PubMed  Google Scholar 

  • Simatende, P., Gadaga, T. H., Nkambule, S. J., & Siwela, M. (2015). Methods of preparation of Swazi traditional fermented foods. Journal of Ethnic Foods, 2(3), 119–125.

    Article  Google Scholar 

  • Singhania, R. R., Patel, A. K., Soccol, C. R., & Pandey, A. (2009). Recent advances in solid-state fermentation. Biochemical Engineering Journal, 44(1), 13–18.

    Article  CAS  Google Scholar 

  • Speight, S., & Harmon, D. (2010). Batch culture evaluation of carbohydrase inhibitors to moderate rumen fermentation. Animal Feed Science and Technology, 155(2–4), 156–162.

    Article  CAS  Google Scholar 

  • Stanbury, P. F., Whitaker, A., & Hall, S. J. (2013). Principles of fermentation technology. Elsevier.

    Google Scholar 

  • Sui, Z., Zheng, M., Zhang, M., & Rangan, A. (2016). Water and beverage consumption: Analysis of the Australian 2011–2012 National Nutrition and Physical Activity Survey. Nutrients, 8(11), 678.

    Article  PubMed  PubMed Central  Google Scholar 

  • Swain, M. R., Anandharaj, M., Ray, R. C., & Rani, R. P. (2014). Fermented fruits and vegetables of Asia: A potential source of probiotics. Biotechnology Research International, 2014, 250424.

    Article  PubMed  PubMed Central  Google Scholar 

  • Tamang, J. P., Tamang, N., Thapa, S., Dewan, S., Tamang, B., Yonzan, H., Rai, A. K., Chettri, R., Chakrabarty, J., & Kharel, N. (2012). Microorganisms and nutritional value of ethnic fermented foods and alcoholic beverages of North East India. Indian Journal of Traditional Knowledge, 11(1), 7–25.

    Google Scholar 

  • Tamang, J. P., Thapa, N., Tamang, B., Rai, A., & Chettri, R. (2015). Microorganisms in fermented foods and beverages. In Health benefits of fermented foods and beverages (pp. 1–110). Routledge.

    Chapter  Google Scholar 

  • Tang, Y.-J., Zhang, W., & Zhong, J.-J. (2009). Performance analyses of a pH-shift and DOT-shift integrated fed-batch fermentation process for the production of ganoderic acid and Ganoderma polysaccharides by medicinal mushroom Ganoderma lucidum. Bioresource Technology, 100(5), 1852–1859.

    Article  CAS  PubMed  Google Scholar 

  • Tyagi, R., Pandey, A., & Pilli, S. (2017). Current developments in biotechnology and bioengineering. Elsevier.

    Google Scholar 

  • Varela, C., Kutyna, D., Solomon, M., Black, C., Borneman, A., Henschke, P., Pretorius, I. S., & Chambers, P. (2012). Evaluation of gene modification strategies for the development of low-alcohol-wine yeasts. Applied and Environmental Microbiology, 78(17), 6068–6077.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wolfe, B. E., Button, J. E., Santarelli, M., & Dutton, R. J. (2014). Cheese rind communities provide tractable systems for in situ and in vitro studies of microbial diversity. Cell, 158(2), 422–433.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yerlikaya, O. (2014). Starter cultures used in probiotic dairy product preparation and popular probiotic dairy drinks. Food Science and Technology, 34, 221–229.

    Article  Google Scholar 

  • Zacharof, M.-P., & Lovitt, R. (2012). Bacteriocins produced by lactic acid bacteria a review article. APCBEE Procedia, 2, 50–56.

    Article  CAS  Google Scholar 

  • Zhao, X., Procopio, S., & Becker, T. (2015). Flavor impacts of glycerol in the processing of yeast fermented beverages: A review. Journal of Food Science and Technology, 52, 7588–7598.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdel Rahman Mohammad Said Al-Tawaha .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Fatima, M. et al. (2023). Sustainable Use of Microbes in Beverage Production. In: Karnwal, A., Mohammad Said Al-Tawaha, A.R. (eds) Food Microbial Sustainability. Springer, Singapore. https://doi.org/10.1007/978-981-99-4784-3_11

Download citation

Publish with us

Policies and ethics