Skip to main content

Optical, Thermal, and Mechanical Properties of Scheelite Molybdate and Tungstate Materials Using Atomistic Simulations

  • Conference paper
  • First Online:
Advances in Engineering Materials (FLAME 2022)

Abstract

Solid-state Raman-active materials are instrumental in the development of advanced eye-safe lasers, laser guide stars, remote sensing, and medical diagnosis and treatment. Present work focuses on studying the properties of Scheelite crystal structures of BaWO4, CaWO4, BaMoO4, and CaMoO4 using atomistic simulations, to evaluate their suitability as Raman-active materials. Properties at zero external hydrostatic pressure such as band gap, dielectric function, refractive index, and thermal conductivity were studied using plane-wave density functional theory. Mechanical properties such as elastic constants, bulk modulus, shear modulus, young’s modulus, Debye temperature, average sound velocity, and anisotropy index were also calculated. The calculated properties were in close correspondence with the available experimental and theoretical literature values. A good Raman-active material should possess high thermal conductivity, good absorption in visible and near-infrared region, and low micro-hardness. Among the four crystals studied, CaWO4 showed higher thermal conductivity and lowest hardness (more flexible and therefore easy to process) and highest fracture toughness. Further, CaMoO4 showed highest refractive index indicating its suitability for optoelectronic applications to develop transparent/anti-reflective materials. Analysis of elastic constants and various mechanical properties infer that the barium based materials and specifically tungstate material is more ductile. Barium-based crystals showed superior anisotropy compared to calcium based crystals. Young’s modulus values infer that BaMoO4 is more ductile than BaWO4, CaMoO4, and CaWO4. Among the four crystals studied, CaWO4 showed highest thermal conductivity followed by CaMoO4. Overall comparison indicates the suitability of calcium-based molybdate and tungstate as Raman-active materials which offer more ease of processing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Orera VM, Merino RI (2015) Ceramics with photonic and optical applications. BOL SOC ESP CERÁM VIDR 54(1):1–10

    Article  Google Scholar 

  2. Xiaoa Z, Yub S, Lia Y, Ruanc S, Kongc LB, Huangd Q, Huangd Z, Zhoue K, Suf H, Yaog Z, Queh W, Liui Y, Zhangi T, Wangj J, Liuj P, Shenj D, Allixk M, Zhang Z, Tang D (2019) Materials development and potential applications of transparent ceramics: a review. Mater Sci Eng R Rep Elsevier 139:100518. https://doi.org/10.1016/j.mser.2019.100518ff.hal-02391441

    Article  Google Scholar 

  3. Oliveira FKF, Oliveira MC, Gracia L, Tranquilin RL, Paskocimas CA, Motta FV, Longo E, Andres J, Bomio MRD (2018) Experimental and theoretical study to explain the morphology of CaMoO4 crystals. J Phys Chem Solids 114:141–152

    Article  Google Scholar 

  4. Luo Z, Li H, Shu H, Wang K, Xia J, Yan Y (2008) Synthesis of BaMoO4 nestlike nanostructures under a new growth mechanism. Cryst Growth Des 8(7):2275–2281

    Article  Google Scholar 

  5. Pontes FM, Maurera MAMA, Souza AG, Longo E, Leite ER, Magnani R, Machado MAC, Pizani PS, Varel JA (2003) Preparation, structural and optical characterization of BaWO4 and PbWO4 thin films prepared by a chemical route. J Eur Ceram Soc 23:3001–3007

    Article  Google Scholar 

  6. Marques APA, de Melo DMA, Longo E, Paskocimas CA, Pizani PS, Leite ER (2005) Photoluminescence properties of BaMoO4 amorphous thin films. J Solid State Chem 178:2346–2353

    Article  Google Scholar 

  7. Ge WW, Zhang HJ, Wang JY, Liu JH, Xu XG, Hu XB, Jiang MH, Ran DG, Sun SQ, Xia HR, Boughton RI (2005) Thermal and mechanical properties of BaWO4 crystal. J Appl Phys 98:013542

    Article  Google Scholar 

  8. Tuersley IP, Jawaid A, Pashby IR (1994) Review: various methods of machining advanced ceramic materials. J Mater Process Technol 42:377–390

    Article  Google Scholar 

  9. Wang X, Fan Z, Yu H, Zhang H, Wang J (2017) Characterization of ZnWO4 Raman crystal. Optical Mater Express 7(6):1732–1744

    Article  Google Scholar 

  10. Benmakhlouf A, Bentabet A (2015) First principles study of structural and elastic properties of BaWO4 Scheelite phase structure under pressure. Int J Phys Math Sci 9(6):329–333

    Google Scholar 

  11. Wu D-H, Wang H-C, Wei L-T, Pan R-K, Tang B-Y (2014) First-principles study of structural stability and elastic properties of MgPd3 and its hydride. J Mag Alloys 2:165–174

    Article  Google Scholar 

  12. Jain A, Ong SP, Hautier G, Chen W, Richards WD, Dacek S, Cholia S, Gunter D, Skinner D, Ceder G, Persson KA (2013) The materials project: a materials genome approach to accelerating materials innovation. APL Mater 1(1):011002

    Article  Google Scholar 

  13. Biovia (2022) Dassault systèmes, material studio version 22. Dassault Systèmes, San Diego

    Google Scholar 

  14. Xiao E-C, Li J, Wang J, Xing C, Guo M, Qiao H, Wang Q, Qi Z-M, Dou Z, Shi F (2018) Phonon characteristics and dielectric properties of BaMoO4 ceramic. J Materiomics 4:383–389

    Article  Google Scholar 

  15. Senyshyn A, Kraus H, Mikhailik VB, Yakovyna V (2004) Lattice dynamics and thermal properties of CaWO4. Phys Rev B 70:214306

    Article  Google Scholar 

  16. Palik ED (1985) Handbook of optical constants of solids. Academic Press, Orlando

    Google Scholar 

  17. Kozak MI, Zhikharev VN, Puga PP, Loya VY (2017) The Kramers-Kronig relations: validation via Calculation Technique. Int J Innov Sci Eng Technol 4(12):152–159

    Google Scholar 

  18. Wang Z, Jiang L, Chen Y, Chen P, Chen H, Mao R (2017) Bridgman growth and scintillation properties of calcium tungstate single crystal. J Cryst Growth 480:96–101

    Article  Google Scholar 

  19. Mytsyk BG, Kost YP, Demyanyshyn NM, Andrushchak AS, Solskii IM (2015) PiezoOptic coefficients of CaWO4 crystals. Crystallogr Rep 60(1):130–137

    Article  Google Scholar 

  20. Voronina IS, Ivleva LI, Basiev TT, Zverev PG, Polozkov NM (2003) Active Raman media: SrWO4:Nd3+, BaWO4:Nd3+. Growth and characterization. J Optoelectron Adv Mater 5(4):887–892

    Google Scholar 

  21. Eberhart ME, Jones TE (2012) Cauchy pressure and the generalized bonding model for nonmagnetic bcc transition metals. Phys Rev B 86:134106

    Article  Google Scholar 

  22. Kavitha C, Narayana C, Ramachandran BE, Gargn N, Sharma SM (2015) Acoustic phonon behavior of PbWO4 and BaWO4 probed by low temperature Brillouin spectroscopy. Solid State Commun 202:78–84

    Article  Google Scholar 

  23. Farley JM, Saunders GA (1971) The elastic constants of CaWO4. Solid State Commun 9(13), 965–969

    Google Scholar 

  24. Alton WJ, Barlow AJ (1967) Acoustic‐wave propagation in tetragonal crystals and measurements of the elastic constants of calcium molybdate. J Appl Phys 38(10)

    Google Scholar 

  25. Najafvandzadeh N, López-Moreno S, Errandone D, Pavone P, Drax C (2020) First-principles study of elastic and thermal properties of scheelite-type molybdates and tungstates. Mat Today Commun 24:101089

    Article  Google Scholar 

  26. Senyshin A, Kraus H, Mikhailik VB, Vasylechko L, Knapp M (2006) Thermal properties of CaMoO4: lattice dynamics and synchrotron powder diffraction studies. Phys Rev B 73:014104

    Article  Google Scholar 

  27. Kube CM (2016) Elastic anisotropy of crystals. AIP Adv 6:095209

    Article  Google Scholar 

  28. Mueller-Plathe F (1997) A simple nonequilibrium molecular dynamics method for calculating the thermal conductivity. J Chem Phys 106:6082

    Article  Google Scholar 

  29. Liu Y, Jia D, Zhou Y, Zhou Y, Zhao J, Li Q, Liu B (2020) Discovery of ABO4 scheelites with the extra low thermal conductivity through high-throughput calculations. J Materiomics 6:702–711

    Article  Google Scholar 

  30. Bsaibess E, Delorme F, Monot-Laffez I, Giovannelli F (2021) Ultra-low thermal conductivity in scheelite and A-deficient scheelite ceramics. Scripta Mater 201:113950

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the SNU-Dassault Centre of Excellence (SDC) for providing the computational resources.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yamini Sudha Sistla .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sistla, Y.S., Burela, R.G., Gupta, A., Tabassum, N. (2024). Optical, Thermal, and Mechanical Properties of Scheelite Molybdate and Tungstate Materials Using Atomistic Simulations. In: Tyagi, R.K., Gupta, P., Das, P., Prakash, R. (eds) Advances in Engineering Materials. FLAME 2022. Lecture Notes in Mechanical Engineering. Springer, Singapore. https://doi.org/10.1007/978-981-99-4758-4_17

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-4758-4_17

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-4757-7

  • Online ISBN: 978-981-99-4758-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics