Skip to main content

A Short Review on the Development of Rare Earths Containing Magnesium Alloys for Biomedical Applications

  • Conference paper
  • First Online:
Advances in Engineering Materials (FLAME 2022)

Abstract

Development of Mg-based degradable implants for several medical applications is an active research field in biomedical engineering. Owing to its biocompatibility, degradability, and non-toxic nature, Mg has gained tremendous attention among material engineers across the globe to use as a potential candidate for manufacturing medical implants. In spite of its promising properties, degradation control is an important area of research to tailor Mg as promising implant material. Alloying of any metal significantly alters its bulk properties and performance during the application. Several Mg alloys were developed for biomedical applications. Among them, rare earths (RE) containing Mg alloys occupy a prominent place. Different RE elements have been used to improve several properties of Mg. The objective of the current review is to present a brief summary of the developments in Mg–RE alloys targeted for biodegradable medical applications. The role of these alloying elements in enhancing the essential bulk properties required for medical applications is presented. The promising future perspectives and challenges involved in developing Mg-RE alloys for medical applications are also briefly discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Witte F, Hort N, Vogt C et al (2008) Degradable biomaterials based on magnesium corrosion. Curr Opin Solid St Mater Sci 12:63–72

    Article  Google Scholar 

  2. Zeng R, Dietzel W, Witte F et al (2008) Progress and challenge for magnesium alloys as biomaterials. Adv Eng Mater 10(8):B3–B14

    Article  Google Scholar 

  3. Avedesian M, Baker MH (1999) ASM specialty handbook, Magnesium and magnesium alloys, ASM International, USA

    Google Scholar 

  4. Kirkland NT, Birbilis N (2014) Magnesium biomaterials design, testing, and best practice. Springer Science and Business Media; New York, USA, pp 1–131

    Google Scholar 

  5. Fridrich HE, Mordike BL (2006) Magnesium technology. Springer, Germany

    Google Scholar 

  6. Liua D, Yang D, Li X, Hu S (2019) Mechanical properties, corrosion resistance and biocompatibilities of degradable Mg–RE alloys: a review. J Mater Res Technol 8(1):1538–1549

    Google Scholar 

  7. Jamel MM, Jamel MM, Lopez HF (2022) Designing advanced biomedical biodegradable Mg alloys: a review. Metals 12:85

    Article  Google Scholar 

  8. Voncken JHL (2015) The rare earth elements: an introduction. Springer

    Google Scholar 

  9. Feyerabend F, Fischer J, Holtz J, Witte F, Willumeit R, Drücker H et al (2010) Evaluation of short-term effects of rare earth and other elements used in magnesium alloys on primary cells and cell lines. Acta Biomater 6(5):1834–1842

    Google Scholar 

  10. Willbold E, Gu X, Albert D, Kalla K, Bobe K, Brauneis M et al (2015) Effect of the addition of low rare earth elements (lanthanum, neodymium, cerium) on the biodegradation and biocompatibility of magnesium. Acta Biomater 11:554

    Article  Google Scholar 

  11. Chino Y, Kado M, Mabuchi M (2008) Enhancement of tensile ductility and stretch formability of magnesium by addition of 0.2 wt%(0.035 at%)Ce. Mater Sci Eng A494(1–2):343–349

    Google Scholar 

  12. Yang L, Ma L, Huang Y, Feyerabend F, Blawert C, Höche D et al (2017) Influence of Dy in solid solution on the degradation behavior of binary Mg–Dy alloys in cell culture medium. Mater Sci Eng C 75:1351–1358

    Google Scholar 

  13. Yang L, Hort N, Laipple D, Höche D, Huang Y, Kainer KU et al (2013) Element distribution in the corrosion layer and cytotoxicity of alloy Mg-10Dy during in vitro biodegradation. Acta Biomater 9(10):8475–8487

    Article  Google Scholar 

  14. Wang XM, Zeng XQ, Wu GS, Yao SS (2006) Yttrium ionimplantation on the surface properties of magnesium. Appl Surf Sci 253(5):2437–2442

    Article  Google Scholar 

  15. Liu M, Schmutz P, Uggowitzer PJ, Song G, Atrens A (2010) The influence of yttrium (Y) on the corrosion of Mg-Y binary alloys. Corros Sci 52(11):3687–3701

    Article  Google Scholar 

  16. Peng Q, Huang Y, Zhou L, Hort N, Kainer KU (2010) Preparation and properties of high purity Mg-Y biomaterials. Biomaterials 31(3):398–403

    Article  Google Scholar 

  17. MacDonald RS (2000) The role of zinc in growth and cell proliferation. J Nutr 130:1500S-S1508

    Article  Google Scholar 

  18. Yuan G, Liu Y, Ding W, Lu C (2007) Effects of extrusion on the microstructure and mechanical properties of Mg-Zn-Gd alloy reinforced with quasi crystalline particles. Mater Sci Eng A 474(1):348–354

    Google Scholar 

  19. Yamasaki M, Hashimoto K, Hagihara K, Kawamura Y (2011) Effectof multimodal microstructure evolution on mechanical properties of Mg-Zn-Y extruded alloy. Acta Mater 59(9):3646–3658

    Article  Google Scholar 

  20. Bian D, Deng J, Li N, Chu X, Liu Y, Li W et al (2018) In vitro andin vivo studies on biomedical magnesium low-alloying with elements gadolinium and zinc for orthopaedic implant applications. ACS Appl Mater Inter 10(5):4394–4408

    Article  Google Scholar 

  21. Miao H, Huang H, Shi Y, Zhang H, Pei J, Yuan G (2017) Effects ofsolution treatment before extrusion on the microstructure, mechanical properties and corrosion of Mg-Zn-Gd alloy invitro. Corros Sci 122(01):90–99

    Article  Google Scholar 

  22. Zhao X, Shi LL, Xu J (2013) Mg-Zn-Y alloys with long-period stacking ordered structure: in vitro assessments of biodegradation behavior. Mater Sci Eng C 33(7):3627–3637

    Article  Google Scholar 

  23. Kraus T, Fischerauer SF, Hänzi AC, Uggowitzer PJ, LöfflerJF,Weinberg AM (2012) Magnesium alloys for temporary implants in osteosynthesis: in vivo studies of their degradation and interaction with bone. Acta Biomater 8(3):1230–1238

    Google Scholar 

  24. Hänzi AC, Gerber I, Schinhammer M, Löffler JF, Uggowitzer PJ (2010) On the in vitro and in vivo degradation performance and biological response of new biodegradable Mg-Y-Zn alloys. Acta Biomater 6(5):1824–1833

    Article  Google Scholar 

  25. Waizy H, Weizbauer A, Modrejewski C, Witte F, WindhagenH, Lucas A et al (2012) In vitro corrosion of ZEK100 plates in Hank’s balanced salt solution. Biomed Eng Online 11(1):1–14

    Google Scholar 

  26. Zhang X, Yuan G, Niu J, Fu P, Ding W (2012) Microstructure, mechanical properties, biocorrosion behavior, and cytotoxicity of as-extruded Mg-Nd-Zn-Zr alloy with different extrusion ratios. J Mech Behav Biomed 9(3):153–162

    Article  Google Scholar 

  27. Niu J, Xiong M, Guan X, Zhang J, Huang H, Pei J et al (2016) Thein vivo degradation and bone-implant interface of Mg-Nd-Zn-Zr alloy screws: 18 months post-operation results. Corros Sci 113:183–187

    Article  Google Scholar 

  28. Li Y, Hodgson PD, Wen C (2011) The effects of calcium and yttrium additions on the microstructure, mechanical properties and biocompatibility of biodegradable magnesium alloys. J MaterSci 46(2):365–371

    Article  Google Scholar 

  29. You S, Huang Y, Kainer KU, Hort N (2018) Influences of yttrium content on microstructure and mechanical properties of as—cast Mg-Ca-Y-Zr alloys. In: TMS meeting exhibition. Springer, Cham, pp 91–97

    Google Scholar 

  30. Tong LB, Zhang QX, Jiang ZH, Zhang JB, Meng J, Cheng LR et al (2016) Microstructures, mechanical properties and corrosion resistances of extruded Mg-Zn-Ca-xCe/La alloys. J Mech Behav Biomed 62:57–70

    Article  Google Scholar 

  31. Zhang Q, Tong L, Cheng L, Jiang Z, Meng J, Zhang H (2015) Effect ofCe/La micro alloying on microstructural evolution of Mg-Zn-Ca alloy during solution treatment. J Rare Earth 33(1):70–76

    Article  Google Scholar 

  32. Yokobayashi H, Kishida K, Inui H, Yamasaki M, Kawamura Y (2011) Enrichment of Gd and Al atoms in the quadruple close packed planes and their in-plane long-range ordering in the long period stacking-ordered phase in the Mg-Al-Gd system. Acta Mater 59(19):7287–7299

    Article  Google Scholar 

  33. Lu F, Ma A, Jiang J, Guo Y, Yang D, Song D et al (2015) Significantly improved corrosion resistance of heat-treated Mg-Al-Gd alloy containing profuse needle-like precipitates within grains. Corros Sci 94:171–178

    Article  Google Scholar 

  34. El-Rahman SSA (2003) Neuropathology of aluminum toxicity in rats (glutamate and GABA impairment). Pharmacol Res 47:189–194

    Google Scholar 

  35. Witte F, Fischer J, Nellesen J, Crostack H-A, Kaese V, Pisch A et al (2006) In vitro and in vivo corrosion measurements of magnesium alloys. Biomaterials 27:1013–1018

    Google Scholar 

  36. Witte F, Kaese V, Haferkamp H, Switzer E, Meyer-Lindenberg A, Wirth CJ et al (2005) In vivo corrosion of four magnesium alloys and the associated bone response. Biomaterials 26:3557–3563

    Article  Google Scholar 

  37. Krause A, Höh N, Bormann D, Krause C, Bach FW,Windhagen H et al (2009) Degradation behaviour and mechanical properties of magnesium implants in rabbit tibiae. J Mater Sci 45:624–632

    Google Scholar 

  38. Zhou WR, Zheng YF, Leeflang MA, Zhou J (2013) Mechanical property, biocorrosion and in vitro biocompatibility evaluations of Mg-Li-(Al)-(RE) alloys for future cardiovascular stent application. Acta Biomater 9(10):8488

    Article  Google Scholar 

  39. Socjusz-Podosek M, Lity´nska L (2003) Effect of yttrium on structure and mechanical properties of Mg alloys. Mater Chem Phys 80:472–475

    Google Scholar 

  40. Hänzi AC, Gunde P, Schinhammer M, Uggowitzer PJ (2009) On the biodegradation performance of an Mg-Y-RE alloy with various surface conditions in simulated body fluid. Acta Biomater 5(1):162–171

    Article  Google Scholar 

  41. Liu D, Ding Y, Guo T, Qin X, Guo C, Yu S et al (2014) Influence of fine-grain and solid-solution strengthening on mechanical properties and in vitro degradation of WE43 alloy. Biomed Mater 9(1):015014

    Article  Google Scholar 

  42. Chu PW, Marquis EA (2015) Linking the microstructure of a heat-treated WE43 Mg alloy with its corrosion behavior. Corros Sci 101:94–104

    Article  Google Scholar 

  43. Jamesh MI, Wu G, Zhao Y, Mckenzie DR, Bilek MMM, Chu PK (2015) Electrochemical corrosion behavior of biodegradable Mg-Y-RE and Mg-Zn-Zr alloys in Ringer’s solution and simulated body fluid. Corros Sci 91:160–184

    Article  Google Scholar 

  44. Praveen Kumar N, Naveen C, Sujatha D, Anandarao D, Naga Sireesha J, Anand Kumar S, Siva I, Venkateswarlu B, Jagannatham M, Ratna Sunil B (2018) Developing composites of ZE41 Mg alloy—naturally derived hydroxyapatite by friction stir processing: investigating in vitro degradation behavior. Mater Technol 33(9):603–611

    Article  Google Scholar 

  45. Zhang F, Aibin MA, Song D, Jiang J, Lu F, Zhang L, Yang D, Chen J (2015) Improving in-vitro biocorrosion resistance of Mg-Zn-Mn-Ca alloy in Hank’s solution through addition of cerium. J Rare Earths 33:93–101

    Article  Google Scholar 

  46. Hort N, Huang Y, Fechner D, Störmer M, Blawert C, Witte F et al (2010) Magnesium alloys as implant materials—principles of property design for Mg-RE alloys. Acta Biomater 6(5):1714–1725

    Article  Google Scholar 

  47. Lee Y, Dahle A, St JD (2000) The role of solute in grain refinement of magnesium. Metall Mater Trans A 31:2895–2906

    Article  Google Scholar 

  48. Brar HS, Berglund IS, Allen JB, Manuel MV (2014) The role of surface oxidation on the degradation behavior of biodegradable Mg-RE (Gd, Y. Sc) alloys for resorbable implants. Mater Sci Eng C 40:407–417

    Google Scholar 

  49. Hakimi O, Aghion E, Goldman J (2015) Improved stress corrosion cracking resistance of a novel biodegradable EW62magnesium alloy by rapid solidification, in simulated electrolytes. Mater Sci Eng C 51:226–232

    Article  Google Scholar 

  50. Alizadeh R, Mahmudi R, Langdon TG (2014) Superplasticity of afine-grained Mg–9Gd–4Y–0.4Zr alloy evaluated using shear punch testing. J Mater Res Technol 3(3):228–232

    Google Scholar 

  51. Li N, Zheng YF (2013) Novel magnesium alloys developed for biomedical application: a review. J Mater Sci Technol 29(6):489–502

    Article  Google Scholar 

  52. He MF, Hu WB, Zhao S, Liu L, Wu YT (2012) Novel multilayer Mg–Al intermetallic coating for corrosion protection of magnesium alloy by molten salts treatment. Trans Nonferrous Met SocChina 22:s74–s78

    Article  Google Scholar 

  53. Chu CL, Han X, Bai J, Xue F, Chu PK (2014) Surface modification of biomedical magnesium alloy wires by micro-arc oxidation. Trans Nonferrous Met Soc China 24:1058–1064

    Article  Google Scholar 

  54. Du ZQ, Yang P (2011) Comparative study on apoptosis and membrane potassium current of dorsal root neurons induced by rare earth ions of lanthanum, lanthanum and strontium. J Chin Soc Rare Earth 29(4):496–503

    Google Scholar 

  55. Zhang Y, Xu J, Ruan YC, Yu MK, O’Laughlin M, Wise H et al (2016) Implant-derived magnesium induces local neuronal production of CGRP to improve bone-fracture healing in rats. Nat Med 22(10):1160

    Article  Google Scholar 

  56. Ratna Sunil B, Sampath Kumar TS, Chakkingal U, Nandakumar V, Mukesh Doble NV (2014) Friction stir processing of magnesium—nanohydroxyapatite composites with controlled in vitro degradation behaviour. Mater Sci Eng C 39:315–324

    Google Scholar 

  57. Ratna Sunil B, Sampath Kumar TS, Chakkingal U, Mukesh Doble NV (2014) Nano-hydroxyapatite reinforced AZ31 magnesium alloy by friction stir processing: a solid state processing for biodegradable metal matrix composites. J Mater Sci Mater Med 25:975–988

    Google Scholar 

  58. Kundurti SC, Sharma A, Tambe P, Kumar A (2022) Fabrication of surface metal matrix composites for structural applications using friction stir processing – a review. Mater Today Proc 561468–561477. https://doi.org/10.1016/j.matpr.2021.12.337

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ambuj Sharma or Ratna Sunil Buradagunta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Vardhan, V.S.S.H., Sharma, A., Dumpala, R., Buradagunta, R.S. (2024). A Short Review on the Development of Rare Earths Containing Magnesium Alloys for Biomedical Applications. In: Tyagi, R.K., Gupta, P., Das, P., Prakash, R. (eds) Advances in Engineering Materials. FLAME 2022. Lecture Notes in Mechanical Engineering. Springer, Singapore. https://doi.org/10.1007/978-981-99-4758-4_14

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-4758-4_14

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-4757-7

  • Online ISBN: 978-981-99-4758-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics