Skip to main content

Dynamic Attention Filter Capsule Network for Medical Images Segmentation

  • Conference paper
  • First Online:
Advanced Intelligent Computing Technology and Applications (ICIC 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14087))

Included in the following conference series:

  • 1008 Accesses

Abstract

In the existing works, Capsule Networks (CapsNets) have been proven to be promising alternatives to Convolutional Neural Networks (CNNs). However, CapsNets perform poorly on complex datasets with RGB backgrounds and cannot handle images with large input sizes. We propose a Dynamic Attention Filter (DAF) method to improve the performance of CapsNets. DAF is a filter unit between low-level capsule layers and voting layers, which can effectively filter the invalid background capsules and improve the classification performance of CapsNet. Besides, we propose DAF-CapsUNet for inputting medical images of large sizes, combining the advantages of the U-shaped encoder-decoder structure and DAF-CapsNet. Specifically, it contains three fundamental operations: an encoder is responsible for extracting shallow feature information, a capsule module is responsible for capturing the detailed feature information lost due to the pooling layer of the CNNs, and a decoder is responsible for fusing the feature information extracted from the two stages. Extensive experiments demonstrate that DAF can improve the performance of CapsNets on complex datasets and reduce the number of parameters, GPU memory cost, and running time of CapsNets. Benefiting from DAF-CapsNet, our model can achieve more useful information for precise localization. The medical experiments show that DAF-CapsUNet achieves SOTA performance compared to other segmentation models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sabour, S., Frosst, N., Hinton, G.E.: Dynamic routing between capsules. In: Advances in NeurIPS (2017)

    Google Scholar 

  2. Hinton, G.E., Sabour, S., Frosst, N.: Matrix capsules with EM routing. In: ICLR (2018)

    Google Scholar 

  3. Kosiorek, A., Sabour, S., Teh, Y.W., Hinton, G.E.: Stacked capsule autoencoders. In: Advances in NeurIPS (2019)

    Google Scholar 

  4. Mazzia, V., Salvetti, F., Chiaberge, M.: Efficient-capsnet: capsule network with self-attention routing. Sci. Rep. 1–13 (2021)

    Google Scholar 

  5. LaLonde, R., Bagci, U.: Capsules for object segmentation. arXiv preprint arXiv:1804.04241 (2018)

  6. Duarte, K., Rawat, Y., Shah, M.: Videocapsulenet: a simplified network for action detection. In: Advances in NeurIPS (2018)

    Google Scholar 

  7. Mobiny, A., Yuan, P., Cicalese, P.A., Van Nguyen, H.: DECAPS: detail-oriented capsule networks. In: Martel, A.L. (ed.) MICCAI 2020. LNCS, vol. 12261, pp. 148–158. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59710-8_15

    Chapter  Google Scholar 

  8. McIntosh, B., Duarte, K., Rawat, Y.S., Shah, M.: Visual-textual capsule routing for text-based video segmentation. In: CVPR, pp. 9942–9951 (2020)

    Google Scholar 

  9. Duarte, K., Rawat, Y.S., Shah, M.: Capsulevos: semi-supervised video object segmentation using capsule routing. In: ICCV, pp. 8480–8489 (2019)

    Google Scholar 

  10. Afshar, P., Naderkhani, F., Oikonomou, A., Rafiee, M.J., Mohammadi, A., Plataniotis, K.N.: Mixcaps: a capsule network-based mixture of experts for lung nodule malignancy prediction. Pattern Recognit. 116, 107942 (2021)

    Article  Google Scholar 

  11. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  12. Zaremba, W., Sutskever, I., Vinyals, O.: Recurrent neural network regularization. arXiv preprint arXiv:1409.2329 (2014)

  13. Hahn, T., Pyeon, M., Kim, G.: Self-routing capsule networks. In: Advances in NeurIPS, vol. 32 (2019)

    Google Scholar 

  14. Tsai, Y.H.H., Srivastava, N., Goh, H., Salakhutdinov, R.: Capsules with inverted dot-product attention routing. In: ICLR (2020)

    Google Scholar 

  15. Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. In: CVPR, pp. 3431–3440 (2015)

    Google Scholar 

  16. Milletari, F., Navab, N., Ahmadi, S.A.: V-net: fully convolutional neural networks for volumetric medical image segmentation. In: 3DV, pp. 565–571. IEEE (2016)

    Google Scholar 

  17. Mehta, R., Sivaswamy, J.: M-net: a convolutional neural network for deep brain structure segmentation. In: ISBI, pp. 437–440. IEEE (2017)

    Google Scholar 

  18. Li, X., Chen, H., Qi, X., Dou, Q., Fu, C.W., Heng, P.A.: H-DenseUNet: hybrid densely connected UNet for liver and tumor segmentation from CT volumes. IEEE Trans. Med. Imaging 37, 2663–2674 (2018)

    Article  Google Scholar 

  19. Isensee, F., Petersen, J., Klein, A., Zimmerer, D., et al.: nnu-net: Selfadapting framework for u-net-based medical image segmentation. arXiv preprint arXiv:1809.10486 (2018)

  20. Perslev, M., Dam, E.B., Pai, A., Igel, C.: One network to segment them all: a general, lightweight system for accurate 3D medical image segmentation. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11765, pp. 30–38. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32245-8_4

    Chapter  Google Scholar 

  21. Wang, T., et al.: MSU-Net: multiscale statistical U-Net for real-time 3D cardiac MRI video segmentation. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11765, pp. 614–622. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32245-8_68

    Chapter  Google Scholar 

  22. Zhou, Y., et al.: Hyper-pairing network for multi-phase pancreatic ductal adenocarcinoma segmentation. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11765, pp. 155–163. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32245-8_18

    Chapter  Google Scholar 

  23. Chen, J., Lu, Y., Yu, Q., Luo, X., Adeli, E., et al.: Transunet: transformers make strong encoders for medical image segmentation. arXiv preprint arXiv:2102.04306 (2021)

  24. Cao, H., Wang, Y., Chen, J., Jiang, D., Zhang, X., Tian, Q., et al.: Swin-unet: Unet-like pure transformer for medical image segmentation. arXiv preprint arXiv:2105.05537 (2021)

  25. Jia, H., Song, Y., Huang, H., Cai, W., Xia, Y.: HD-Net: hybrid discriminative network for prostate segmentation in MR images. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11765, pp. 110–118. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32245-8_13

    Chapter  Google Scholar 

  26. Baumgartner, C.F., et al.: PHiSeg: capturing uncertainty in medical image segmentation. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11765, pp. 119–127. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32245-8_14

    Chapter  Google Scholar 

  27. Gu, Z., et al.: Ce-net: context encoder network for 2d medical image segmentation. IEEE Trans. Med. Imaging 38, 2281–2292 (2019)

    Article  Google Scholar 

  28. Huo, Y., Xu, Z., Bao, S., et al.: Splenomegaly segmentation on multi-modal MRI using deep convolutional networks. IEEE Trans. Med. Imaging 38, 1185–1196 (2018)

    Article  Google Scholar 

  29. Lin, T.Y., Dollár, P., Girshick, R., He, K., Hariharan, B., Belongie, S.: Feature pyramid networks for object detection. In: CVPR, pp. 2117–2125 (2017)

    Google Scholar 

  30. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: CVPR, pp. 770–778 (2016)

    Google Scholar 

  31. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. In: ICLR 2015 (2015)

    Google Scholar 

  32. Sudre, C.H., Li, W., Vercauteren, T., Ourselin, S., Jorge Cardoso, M.: Generalised dice overlap as a deep learning loss function for highly unbalanced segmentations. In: Cardoso, M.J. (ed.) DLMIA/ML-CDS -2017. LNCS, vol. 10553, pp. 240–248. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-67558-9_28

    Chapter  Google Scholar 

  33. Phaye, S.S.R., Sikka, A., Dhall, A., Bathula, D.: Dense and diverse capsule networks: Making the capsules learn better. arXiv preprint arXiv:1805.04001 (2018)

  34. Ribeiro, F.D.S., Leontidis, G., Kollias, S.: Capsule routing via variational bayes. In: AAAI, vol. 34, pp. 3749–3756 (2020)

    Google Scholar 

  35. Rajasegaran, J., Jayasundara, V., Jayasekara, S., Jayasekara, H., Seneviratne, S., Rodrigo, R.: Deepcaps: going deeper with capsule networks. In: CVPR, pp. 10725–10733 (2019)

    Google Scholar 

  36. Goodfellow, I.J., Shlens, J., Szegedy, C.: Explaining and harnessing adversarial examples. In: ICLR 2015 (2015)

    Google Scholar 

  37. Fu, S., et al.: Domain adaptive relational reasoning for 3D multi-organ segmentation. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12261, pp. 656–666. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59710-8_64

    Chapter  Google Scholar 

  38. Oktay, O., Schlemper, J., Folgoc, L.L., Lee, M., Heinrich, M., Misawa, K., et al.: Attention u-net: learning where to look for the pancreas. arXiv preprint arXiv:1804.03999 (2018)

  39. Zhou, H.Y., Guo, J., Zhang, Y., Yu, L., Wang, L., Yu, Y.: nnformer: interleaved transformer for volumetric segmentation. arXiv preprint arXiv:2109.03201 (2021)

Download references

Acknowledgment

This work was supported in part by the National Natural Science Foundation of China under Grants 61976079, in part by Guangxi Key Research and Development Program under Grant AB22035022, and in part by Anhui Key Research and Development Program under Grant 202004a05020039.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhong-Qiu Zhao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chen, R., Hu, K., Zhao, ZQ. (2023). Dynamic Attention Filter Capsule Network for Medical Images Segmentation. In: Huang, DS., Premaratne, P., Jin, B., Qu, B., Jo, KH., Hussain, A. (eds) Advanced Intelligent Computing Technology and Applications. ICIC 2023. Lecture Notes in Computer Science, vol 14087. Springer, Singapore. https://doi.org/10.1007/978-981-99-4742-3_7

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-4742-3_7

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-4741-6

  • Online ISBN: 978-981-99-4742-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics