Skip to main content

Reinforcement Control for Planar Robot Based on Neural Network and Extended State Observer

  • Conference paper
  • First Online:
Intelligent Systems and Networks (ICISN 2023)

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 752))

Included in the following conference series:

Abstract

Based on the cooperation of neural network and extended state observer (ESO), in this paper, an approach for reinforcement control will be presented for Planar robot. By using the sliding surface as a state variable, the nominal system in quadratic form will be converted to first-order where the total uncertain component is estimated and remove by ESO. Then, a reinforcement algorithm will be added in collaboration to determine the nearly optimal solution of Hamilton-Jacobi-Bellman (HJB) equation. During the determination of the control signal, only one neural network is applied to reduce the computational complexity while still achieving the desired requirements. The simulation results of the algorithm will be examined on the Planar Robot with two degrees of freedom, thereby confirming the effectiveness of proposed control strategy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Blatnický, M., Dizo, J., Gerlici, J., Sága, M., Lack, T., Kuba, E.: Design of a robotic manipulator for handling products of automotive industry. Int. J. Adv. Robot. Syst. 17(1) (2020)

    Google Scholar 

  2. Li, H., Liu, C.L., Zhang, Y., Chen, Y.Y.: Adaptive neural networks-based fixed-time fault-tolerant consensus tracking for uncertain multiple Euler-Lagrange systems. ISA Trans. 129, 102–113 (2021)

    Google Scholar 

  3. Rahmani, M., Komijani, H., Rahman, M.H.: New sliding mode control of 2-DOF robot manipulator based on extended grey wolf optimizer. Int. J. Control Autom. Syst. 18(6), 1572–1580 (2020). https://doi.org/10.1007/s12555-019-0154-x

    Article  Google Scholar 

  4. Shao, K., Tang, R., Xu, F., Wang, X., Zheng, J.: Adaptive sliding mode control for uncertain Euler-Lagrange systems with input saturation. J. Franklin Inst. 358(16), 8356–8376 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  5. Ramírez-Neria, M., Madonski, R., Luviano-Juárez, A., Gao, Z., Sira-Ramírez, H.: Design of ADRC for second-order mechanical systems without time-derivatives in the tracking controller. In: 2020 American Control Conference (ACC), (2020)

    Google Scholar 

  6. Ha, W., Back, J.: A disturbance observer-based Robust Tracking Controller for Uncertain Robot Manipulators. Int. J. Control Autom. Syst. 16(2), 417–425 (2018). https://doi.org/10.1007/s12555-017-0188-x

    Article  Google Scholar 

  7. Zhang, Z., Leibold, M., Wollherr, D.: Integral sliding-mode observer-based disturbance estimation for Euler-Lagrangian systems. IEEE Trans. Control Syst. Technol. 28(6), 2377–2389 (2019)

    Article  Google Scholar 

  8. Zhou, Q., Zha, S., Li, R., Lu, R., Wu, C.: Adaptive neural network tracking control for robotic manipulators with dead zone. IEEE Trans. Neural Netw. Learn. Syst. 30(12), 3611 - 3620 (2018)

    Google Scholar 

  9. Jouila, A., Nouri, K.: An adaptive robust nonsingular fast terminal sliding mode controller based on wavelet neural network for a 2-DOF robotic arm. J. Franklin Inst. 357(18), 13259–13282 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  10. Ioannou, P., Fidan, B.: Advances in Design and Control, Adaptive Control Tutorizal. SIAM, PA (2006)

    Book  MATH  Google Scholar 

  11. Tang, L., Liu, Y.J., Tong, S.: Adaptive neural control using reinforcement learning for a class of robot manipulator. Neural Comput. Appl. 25, 135–141 (2014)

    Article  Google Scholar 

  12. Lewis, F.L., Vrabie, D.: Reinforcement learning and adaptive dynamic programming for feedback control. IEEE Circuits Syst. Mag. 9(3), 32–50 (2009)

    Article  Google Scholar 

  13. Dupree, K., Patre, P.M., Wilcox, Z.D., Dixon, W.E.: Asymptotic optimal control of uncertain nonlinear Euler-Lagrange systems. Automatica 1, 99–107 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  14. Hu, Y., Si, B.: A reinforcement learning neural network for robotic manipulator control. Neural Comput. 30(7), 1983–2004 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  15. Vamvoudakis, K.G., Lewis, F.L.: Online actor-critic algorithm to solve the continuous-time infinite horizon optimal control problem. Automatica, 46, 878–888, (2010)

    Google Scholar 

  16. Vu, V.T., Dao, P.N., Loc, P.T., Huy, T.Q.: Sliding Variable-based online adaptive reinforcement learning of uncertain/disturbed nonlinear mechanical systems. J. Control Autom. Electr. Syst. 32(2), 281–290 (2021). https://doi.org/10.1007/s40313-020-00674-w

    Article  Google Scholar 

  17. Luy, N.T.: Reinforecement learning-based optimal tracking control for wheeled mobile robot. In: Proceedings of IEEE International Conference on Cyber Technology in Automation, Control, and Intelligent Systems (CYBER), pp. 371-376, May 2012

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hai Xuan Le .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Trung, D.N., Van, T.N., Le, H.X., Manh, D.D., Hoang, D. (2023). Reinforcement Control for Planar Robot Based on Neural Network and Extended State Observer. In: Nguyen, T.D.L., Verdú, E., Le, A.N., Ganzha, M. (eds) Intelligent Systems and Networks. ICISN 2023. Lecture Notes in Networks and Systems, vol 752. Springer, Singapore. https://doi.org/10.1007/978-981-99-4725-6_62

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-4725-6_62

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-4724-9

  • Online ISBN: 978-981-99-4725-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics