Skip to main content

Data Privacy and Security in the Metaverse

  • Chapter
  • First Online:
Metaverse

Part of the book series: Studies in Big Data ((SBD,volume 133))

Abstract

Metaverse is an abstract concept that transforms our physical world into a digital environment. As the Metaverse expands and gains widespread attention from users, privacy and security issues come to the forefront. An increase in the number of users means a large amount of personal data is being collected about users. Metaverse data includes biometric information, which consists of users’ physiological responses, facial expressions, voice tones, and vital characteristics. Artificial intelligence methods with biometric data raise concerns about data privacy and security. Limitations are required to be put on the type, amount of collected personal data, and how it will be shared with third parties. The use of wearable technologies also increases the effects of existing threats in the virtual world through new methods. Current security measures are insufficient for Metaverse applications. In this chapter, the threats and challenges faced in terms of data privacy and security in Metaverse applications are introduced, and methods developed as solutions to these fundamental problems are examined.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zuckerberg, M.: Founder's Letter (2021). Facebook. https://about.fb.com/news/2021/10/founders-letter/. Accessed June 2022

  2. Isaak, J., Hanna, M.J.: User data privacy: facebook, Cambridge analytica, and privacy protection. Computer 51(8), 56–59 (2018)

    Article  Google Scholar 

  3. Agora, T.: Agora Survey: Majority of Developers are All-In on the Metaverse. https://www.agora.io/en/blog/agora-survey-majority-of-developers-are-all-in-on-the-Metaverse/. Accessed 28 June 2022

  4. Falchuk, B., Loeb, S., Neff, R.: The social Metaverse: battle for privacy. IEEE Technol. Soc. Mag. 37(2), 52–61 (2018)

    Article  Google Scholar 

  5. Park, S.-M., Kim, Y.-G.: A Metaverse: taxonomy, components, applications, and open challenges. IEEE Access 10, 4209–4251 (2022)

    Article  Google Scholar 

  6. Nakamoto, S.: Bitcoin: a peer-to-peer electronic cash system. Decent. Bus. Rev. 21260 (2008)

    Google Scholar 

  7. Bernabe, J.B., Canovas, J.L., Hernandez-Ramos, J.L., Moreno, R.T., Skarmeta, A.: Privacy-preserving solutions for blockchain: review and challenges. IEEE Access 7, 164908–164940 (2019)

    Article  Google Scholar 

  8. Kim, T.-H., et al.: A privacy preserving distributed ledger framework for global human resource record management: the blockchain aspect. IEEE Access 8, 96455–96467 (2020)

    Article  Google Scholar 

  9. Leenes, R.: Privacy in the Metaverse. In: IFIP International Summer School on the Future of Identity in the Information Society, pp. 95–112. Springer (2007)

    Google Scholar 

  10. Ometov, A., et al.: A survey on wearable technology: history, state-of-the-art and current challenges. Comput. Netw. 193, 108074 (2021)

    Article  Google Scholar 

  11. De Ree, M., Mantas, G., Radwan, A., Mumtaz, S., Rodriguez, J., Otung, I.E.: Key management for beyond 5G mobile small cells: a survey. IEEE Access 7, 59200–59236 (2019)

    Article  Google Scholar 

  12. Ritzdorf, H., Soriente, C., Karame, G.O., Marinovic, S., Gruber, D., Capkun, S.: Toward shared ownership in the cloud. IEEE Trans. Inf. Forensics Secur. 13(12), 3019–3034 (2018)

    Article  Google Scholar 

  13. Cao, Y., Yang, L.: A survey of identity management technology. In: 2010 IEEE International Conference on Information Theory and Information Security. IEEE, pp. 287–293 (2010)

    Google Scholar 

  14. Sarker, I.: CyberLearning: effectiveness analysis of machine learning security modeling to detect cyber-anomalies and multi-attacks (in English). Internet of Things 14(ARTN 100393) (2021). https://doi.org/10.1016/j.iot.2021.100393

  15. Augot, D., Chabanne, H., Chenevier, T., George, W., Lambert, L.: A user-centric system for verified identities on the bitcoin blockchain. In: Data Privacy Management, pp. 390–407. Springer, Cryptocurrencies and Blockchain Technology (2017)

    Google Scholar 

  16. Su, Z., Wang, Y., Xu, Q., Zhang, N.: LVBS: Lightweight vehicular blockchain for secure data sharing in disaster rescue. IEEE Trans. Dependable Secure Comput. (2020)

    Google Scholar 

  17. Far, S.B., Rad, A.I.: Applying digital twins in metaverse: user interface, security and privacy challenges. J. Metaverse 2(1), 8–16 (2022)

    Google Scholar 

  18. Suhail, S., Hussain, R., Jurdak, R., Hong, C.S.: Trustworthy digital twins in the industrial Internet of things with blockchain. IEEE Internet Comput. (2021)

    Google Scholar 

  19. Aiyanyo, I.D., Samuel, H., Lim, H.: A systematic review of defensive and offensive cybersecurity with machine learning. Appl. Sci. Basel 10(17), Art no. 5811 (2020) https://doi.org/10.3390/app10175811.

  20. Sohal, A.S., Sandhu, R., Sood, S.K., Chang, V.: A cybersecurity framework to identify malicious edge device in fog computing and cloud-of-things environments. Comput. Secur. 74, 340–354 (2018)

    Article  Google Scholar 

  21. Grider, D., Maximo, M.: The Metaverse: Web 3.0 virtual cloud economies. Grayscale Res. (2021)

    Google Scholar 

  22. Kim, A., Oh, J., Ryu, J., Lee, K.: A review of insider threat detection approaches with IoT perspective. IEEE Access 8, 78847–78867 (2020)

    Article  Google Scholar 

  23. Lu, Y., Huang, X., Zhang, K., Maharjan, S., Zhang, Y.: Low-latency federated learning and blockchain for edge association in digital twin empowered 6G networks. IEEE Trans. Industr. Inf. 17(7), 5098–5107 (2020)

    Article  Google Scholar 

  24. Kim, J.-D., Ko, M., Chung, J.-M.: Novel analytical models for sybil attack detection in IPv6-based RPL wireless IoT networks. In: 2022 IEEE International Conference on Consumer Electronics (ICCE). IEEE, pp. 1–3 (2022)

    Google Scholar 

  25. Zhang, K., Liang, X., Lu, R., Shen, X.: Sybil attacks and their defenses in the Internet of things. IEEE Internet Things J. 1(5), 372–383 (2014)

    Article  Google Scholar 

  26. Wang, Y., et al.: A survey on metaverse: fundamentals, security, and privacy. arXiv preprint arXiv:2203.02662 (2022)

  27. Chadwick, D.W.: Federated identity management. In: Foundations of security analysis and design V. Springer, pp. 96–120 (2009)

    Google Scholar 

  28. Schmidt, K., Mühle, A., Grüner, A., Meinel, C.: Clear the fog: towards a taxonomy of self-sovereign identity ecosystem members. In: 2021 18th International Conference on Privacy, Security and Trust (PST). IEEE, pp. 1–7 (2021)

    Google Scholar 

  29. Ching, K.W., Singh, M.M.: Wearable technology devices security and privacy vulnerability analysis. Int. J. Netw. Secur. Appl. 8(3), 19–30 (2016)

    Google Scholar 

  30. Datta, P., Namin, A.S., Chatterjee, M.: A survey of privacy concerns in wearable devices. In: 2018 IEEE International Conference on Big Data (Big Data). IEEE, pp. 4549–4553 (2018)

    Google Scholar 

  31. Sirur, S., Nurse, J.R., Webb, H.: Are we there yet? understanding the challenges faced in complying with the General Data Protection Regulation (GDPR). In: Proceedings of the 2nd International Workshop on Multimedia Privacy and Security, pp. 88–95 (2018)

    Google Scholar 

  32. Chen, Z., Ren, W., Ren, Y., Choo, K.-K.R.: LiReK: a lightweight and real-time key establishment scheme for wearable embedded devices by gestures or motions. Futur. Gener. Comput. Syst. 84, 126–138 (2018)

    Article  Google Scholar 

  33. Sumbul, H.E., et al. (2022) System-level design and integration of a prototype AR/VR hardware featuring a custom low-power DNN accelerator chip in 7nm technology for codec avatars. In: 2022 IEEE Custom Integrated Circuits Conference (CICC). IEEE, pp. 01–08

    Google Scholar 

  34. Zhao, T., Wang, Y., Liu, J., Chen, Y., Cheng, J., Yu, J.: Trueheart: continuous authentication on wrist-worn wearables using ppg-based biometrics. In: IEEE INFOCOM 2020-IEEE Conference on Computer Communications. IEEE, pp. 30–39 (2020)

    Google Scholar 

  35. Ansari, R.I., et al.: 5G D2D networks: techniques, challenges, and future prospects. IEEE Syst. J. 12(4), 3970–3984 (2017)

    Article  Google Scholar 

  36. Shen, M., et al.: Blockchain-assisted secure device authentication for cross-domain industrial IoT. IEEE J. Sel. Areas Commun. 38(5), 942–954 (2020)

    Article  Google Scholar 

  37. Wang, M., Yan, Z.: A survey on security in D2D communications. Mob. Netw. Appl. 22(2), 195–208 (2017)

    Article  Google Scholar 

  38. Chen, J., Zhan, Z., He, K., Du, R., Wang, D., Liu, F.: XAuth: efficient privacy-preserving cross-domain authentication. IEEE Trans. Dependable Secure Comput. (2021)

    Google Scholar 

  39. Liu, H., Yao, X., Yang, T., Ning, H.: Cooperative privacy preservation for wearable devices in hybrid computing-based smart health. IEEE Internet Things J. 6(2), 1352–1362 (2018)

    Article  Google Scholar 

  40. Gong, L., Needham, R.M., Yahalom, R.: Reasoning about belief in cryptographic protocols. In: IEEE Symposium on Security and Privacy, vol. 1990. Citeseer, pp. 234–248 (1990)

    Google Scholar 

  41. Gehrmann, C., Gunnarsson, M.: A digital twin based industrial automation and control system security architecture. IEEE Trans. Industr. Inf. 16(1), 669–680 (2019)

    Article  Google Scholar 

  42. Suhail, S., et al.: Blockchain-based digital twins: research trends, issues, and future challenges. ACM Comput. Surv. (CSUR) (2021)

    Google Scholar 

  43. Rauschnabel, P.A., Rossmann, A., Tom Dieck, M.C.: An adoption framework for mobile augmented reality games: the case of Pokémon Go. Comput. Hum. Behav. 76, 276–286 (2017)

    Google Scholar 

  44. Shang, J., Chen, S., Wu, J., Yin, S.: ARSpy: breaking location-based multi-player augmented reality application for user location tracking. IEEE Trans. Mob. Comput. (2020)

    Google Scholar 

  45. Thongmak, M.: Protecting privacy in Pokémon go: a multigroup analysis. Technol. Soc. 101999 (2022)

    Google Scholar 

  46. Yazdinejad, A., Dehghantanha, A., Parizi, R.M., Srivastava, G., Karimipour, H.: Secure intelligent fuzzy blockchain framework: Effective threat detection in IoT networks. Comput. Ind. 144, 103801 (2023)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tuba Parlar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Parlar, T. (2023). Data Privacy and Security in the Metaverse. In: Esen, F.S., Tinmaz, H., Singh, M. (eds) Metaverse. Studies in Big Data, vol 133. Springer, Singapore. https://doi.org/10.1007/978-981-99-4641-9_8

Download citation

Publish with us

Policies and ethics