Skip to main content

Waste Shell Biorefinery: Sustainable Production of Organonitrogen Chemicals

  • Chapter
  • First Online:
Production of N-containing Chemicals and Materials from Biomass

Part of the book series: Biofuels and Biorefineries ((BIOBIO,volume 12))

  • 163 Accesses

Abstract

This chapter focuses on sustainable production of organonitrogen chemicals from the concept of a waste shell biorefinery. Chitin waste is naturally nitrogenous and can be converted into small molecule, high value-added organic compounds. In aqueous media or organic solvents/co-solvents, chitin can be depolymerized/deacetylated to acetylglucosamine or glucosamine. In addition, chitin can also be converted to important platform chemicals such as amino acids and furans by oxidation and dehydration. Finally, this chapter introduces conversion strategies for chitin, such as hydrothermal methods, hydrogenation reactions and condensation reactions and demonstrates the types and routes of conversion of chitin to organic nitrogenous chemicals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kerton FM, Liu Y, Omari KW, Hawboldt K. Green chemistry and the ocean-based biorefinery. Green Chem. 2013;15(4):860–71. https://doi.org/10.1039/c3gc36994c.

    Article  CAS  Google Scholar 

  2. Beaney P, Lizardi-Mendoza J, Healy M. Comparison of chitins produced by chemical and bioprocessing methods. J Chem Technol Biotechnol. 2005;80(2):145–50. https://doi.org/10.1002/jctb.1164.

    Article  CAS  Google Scholar 

  3. Chen X, Song S, Li H, Gözaydın G, Yan N. Expanding the boundary of biorefinery: organonitrogen chemicals from biomass. Acc Chem Res. 2021;54(7):1711–22. https://doi.org/10.1021/acs.accounts.0c00842.

    Article  CAS  PubMed  Google Scholar 

  4. Stephen AM, Phillips GO, Williams PA. Food polysaccharides and their applications. CRC/Taylor & Francis; 2006.: 733 p. https://doi.org/10.1201/9781420015164.

    Book  Google Scholar 

  5. Bastiaens L, Soetemans L, D’Hondt E, Elst K. Sources of chitin and chitosan and their isolation. 2020:1–34. https://doi.org/10.1002/9781119450467.ch1.

  6. Sogias IA, Khutoryanskiy VV, Williams AC. Exploring the factors affecting the solubility of chitosan in water. Macromol Chem Phys. 2010;211(4):426–33. https://doi.org/10.1002/macp.200900385.

    Article  CAS  Google Scholar 

  7. Kumar M. A review of chitin and chitosan applications. React Funct Polym. 2000;46(1):1–27. https://doi.org/10.1016/S1381-5148(00)00038-9.

    Article  CAS  Google Scholar 

  8. Liu L, Zhu L, Zhang S, Ma Y, Wang L, Wang H, Niu X. Preparation and properties of chitosan-based bacteriostatic agents and their application in strawberry bacteriostatic preservation. J Food Sci. 2021;86(10):4611–27. https://doi.org/10.1111/1750-3841.15912.

    Article  CAS  PubMed  Google Scholar 

  9. Aranaz I, Acosta N, Civera C, Elorza B, Mingo J, Castro C, Gandía MDlL, Caballero AH. Cosmetics and cosmeceutical applications of chitin, chitosan and their derivatives. Polymers. 2018;10(2):213. https://doi.org/10.3390/polym10020213.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Yan N, Chen X. Sustainability: don’t waste seafood waste. Nature. 2015;524(7564):155–7. https://doi.org/10.1038/524155a.

    Article  CAS  PubMed  Google Scholar 

  11. Yang H, Gözaydın G, Nasaruddin RR, Har JRG, Chen X, Wang X, Yan N. Toward the shell biorefinery: processing crustacean shell waste using hot water and carbonic acid. ACS Sustain Chem Eng. 2019;7(5):5532–42. https://doi.org/10.1021/acssuschemeng.8b06853.

    Article  CAS  Google Scholar 

  12. Shahidi F, Synowiecki J. Isolation and characterization of nutrients and value-added products from snow crab (Chionoecetes opilio) and shrimp (Pandalus borealis) processing discards. J Agric Food Chem. 2002;39(8):1527–32. https://doi.org/10.1021/jf00008a032.

    Article  Google Scholar 

  13. Cheung PCK, Leung AYH, Ang PO. Comparison of supercritical carbon dioxide and Soxhlet extraction of lipids from a brown seaweed, sargassum hemiphyllum (Turn.) C Ag. J Agric Food Chem. 1998;46(10):4228–32. https://doi.org/10.1021/jf980346h.

    Article  CAS  Google Scholar 

  14. Chevolot L, Foucault A, Chaubet F, Kervarec N, Sinquin C, Fisher A-M, Boisson-Vidal C. Further data on the structure of brown seaweed fucans: relationships with anticoagulant activity. Carbohydr Res. 1999;319(1–4):154–65. https://doi.org/10.1016/s0008-6215(99)00127-5.

    Article  CAS  PubMed  Google Scholar 

  15. Naylor RL, Hardy RW, Bureau DP, Chiu A, Elliott M, Farrell AP, Forster I, Gatlin DM, Goldburg RJ, Hua K, Nichols PD. Feeding aquaculture in an era of finite resources. Proc Natl Acad Sci U S A. 2009;106(36):15103–10. https://doi.org/10.1073/pnas.0905235106.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Charoenvuttitham P, Shi J, Mittal GS. Chitin extraction from black tiger shrimp (Penaeus monodon) waste using organic acids. Sep Sci Technol. 2006;41:1135–53. https://doi.org/10.1080/01496390600633725.

    Article  CAS  Google Scholar 

  17. Broussignac P. Un haut polymère naturel peu connu dans l’industrie, Le chitosane. Chim Ind Genie Chim. 1968;99:1241–7.

    CAS  Google Scholar 

  18. Lezica RP, Quesada-AlluÉ L. In: Chitin PMD, editor. Carbohydrates. Academic; 1990. p. 443–81. https://doi.org/10.1016/b978-0-12-461012-5.50019-7.

    Chapter  Google Scholar 

  19. Gagné N, Simpson BK. Use of proteolytic enzymes to facilitate the recovery of chitin from shrimp wastes. Food Biotechnol. 1993;7(3):253–63. https://doi.org/10.1080/08905439309549861.

    Article  Google Scholar 

  20. Zakaria Z, Hall GM, Shama G. Lactic acid fermentation of scampi waste in a rotating horizontal bioreactor for chitin recovery. Process Biochem. 1998;33(1):1–6. https://doi.org/10.1016/s0032-9592(97)00069-1.

    Article  CAS  Google Scholar 

  21. Teng WL, Khor E, Tan TK, Lim LY, Tan SC. Concurrent production of chitin from shrimp shells and fungi. Carbohydr Res. 2001;332(3):305–16. https://doi.org/10.1016/s0008-6215(01)00084-2.

    Article  CAS  PubMed  Google Scholar 

  22. Sedaghat F, Yousefzadi M, Toiserkani H, Najafipour S. Chitin from penaeus merguiensis via microbial fermentation processing and antioxidant activity. Int J Biol Macromol. 2016;82:279–83. https://doi.org/10.1016/j.ijbiomac.2015.10.070.

    Article  CAS  PubMed  Google Scholar 

  23. Duan S, Li L, Zhuang Z, Wu W, Hong S, Zhou J. Improved production of chitin from shrimp waste by fermentation with epiphytic lactic acid bacteria. Carbohydr Polym. 2012;89(4):1283–8. https://doi.org/10.1016/j.carbpol.2012.04.051.

    Article  CAS  PubMed  Google Scholar 

  24. Swatloski RP, Spear SK, Holbrey JD, Rogers RD. Dissolution of cellulose [correction of cellose] with ionic liquids. J Am Chem Soc. 2002;124(18):4974–5. https://doi.org/10.1021/ja025790m.

    Article  CAS  PubMed  Google Scholar 

  25. Siankevich S, Fei Z, Yan N, Dyson PJ. Application of ionic liquids in the downstream processing of lignocellulosic biomass. Chimia (Aarau). 2015;69(10):592–6. https://doi.org/10.2533/chimia.2015.592.

    Article  CAS  PubMed  Google Scholar 

  26. Xie, H., S. Zhang, and S. Li Chitin and chitosan dissolved in ionic liquids as reversible sorbents of CO2. Green Chem, 2006, 8(7): 630–633.doi:https://doi.org/10.1039/b517297g.

    Book  Google Scholar 

  27. Yamazaki S, Takegawa A, Kaneko Y, Kadokawa J-i, Yamagata M, Ishikawa M. An acidic cellulose–chitin hybrid gel as novel electrolyte for an electric double layer capacitor. Electrochem Commun. 2009;11(1):68–70. https://doi.org/10.1016/j.elecom.2008.10.039.

    Article  CAS  Google Scholar 

  28. Wu Y, Sasaki T, Irie S, Sakurai K. A novel biomass-ionic liquid platform for the utilization of native chitin. Polymer. 2008;49(9):2321–7. https://doi.org/10.1016/j.polymer.2008.03.027.

    Article  CAS  Google Scholar 

  29. Qin Y, Lu X, Sun N, Rogers RD. Dissolution or extraction of crustacean shells using ionic liquids to obtain high molecular weight purified chitin and direct production of chitin films and fibers. Green Chem. 2010;12(6):968–71. https://doi.org/10.1039/c003583a.

    Article  CAS  Google Scholar 

  30. Setoguchi T, Kato T, Yamamoto K, Kadokawa J. Facile production of chitin from crab shells using ionic liquid and citric acid. Int J Biol Macromol. 2012;50(3):861–4. https://doi.org/10.1016/j.ijbiomac.2011.11.007.

    Article  CAS  PubMed  Google Scholar 

  31. Sharma M, Mukesh C, Mondal D, Prasad K. Dissolution of α-chitin in deep eutectic solvents. RSC Adv. 2013;3(39):18149–55. https://doi.org/10.1039/c3ra43404d.

    Article  CAS  Google Scholar 

  32. Xu P, Zheng G-W, Zong M-H, Li N, Lou W-Y. Recent progress on deep eutectic solvents in biocatalysis. Bioresour Bioprocess. 2017;4(1):34. https://doi.org/10.1186/s40643-017-0165-5.

    Article  PubMed Central  PubMed  Google Scholar 

  33. Devi R, Dhamodharan R. Pretreatment in hot glycerol for facile and green separation of chitin from prawn shell waste. ACS Sustain Chem Eng. 2017;6(1):846–53. https://doi.org/10.1021/acssuschemeng.7b03195.

    Article  CAS  Google Scholar 

  34. Zhou P, Li J, Yan T, Wang X, Huang J, Kuang Z, Ye M, Pan M. Selectivity of deproteinization and demineralization using natural deep eutectic solvents for production of insect chitin (Hermetia illucens). Carbohydr Polym. 2019;225:115255. https://doi.org/10.1016/j.carbpol.2019.115255.

    Article  CAS  PubMed  Google Scholar 

  35. Sun X, Wei Q, Yang Y, Xiao Z, Ren X. In-depth study on the extraction and mechanism of high-purity chitin based on NADESs method. J Environ Chem Eng. 2022;10(1):106859. https://doi.org/10.1016/j.jece.2021.106859.

    Article  CAS  Google Scholar 

  36. Niola F, Basora N, Chornet E, Vidal PF. A rapid method for the determination of the degree of N-acetylation of chitin-chitosan samples by acid hydrolysis and HPLC. Carbohydr Res. 1993;238:1–9. https://doi.org/10.1016/0008-6215(93)87001-9.

    Article  CAS  Google Scholar 

  37. Cabrera JC, Van Cutsem P. Preparation of chitooligosaccharides with degree of polymerization higher than 6 by acid or enzymatic degradation of chitosan. Biochem Eng J. 2005;25(2):165–72. https://doi.org/10.1016/j.bej.2005.04.025.

    Article  CAS  Google Scholar 

  38. Xing R, Liu S, Yu H, Guo Z, Wang P, Li C, Li Z, Li P. Salt-assisted acid hydrolysis of chitosan to oligomers under microwave irradiation. Carbohydr Res. 2005;340(13):2150–3. https://doi.org/10.1016/j.carres.2005.06.028.

    Article  CAS  PubMed  Google Scholar 

  39. Wu H, Li H, Fang Z. Hydrothermal amination of biomass to nitrogenous chemicals. Green Chem. 2021;23(18):6675–97. https://doi.org/10.1039/d1gc02505h.

    Article  CAS  Google Scholar 

  40. De Chavez D, Kobayashi H, Fukuoka A, Hasegawa J-Y. On the electronic structure origin of mechanochemically induced selectivity in acid-catalyzed chitin hydrolysis. Chem Eur J. 2021;125(1):187–97. https://doi.org/10.1021/acs.jpca.0c09030.

    Article  CAS  Google Scholar 

  41. Kaisler M, van den Broek LAM, Boeriu CG. Chitin and chitosan as sources of bio-based building blocks and chemicals. In: Chitin and chitosan: properties and applications; 2020. p. 229–44. https://doi.org/10.1002/9781119450467.

    Chapter  Google Scholar 

  42. Nakamura H. Application of glucosamine on human disease—osteoarthritis. Carbohydr Polym. 2011;84(2):835–9. https://doi.org/10.1016/j.carbpol.2010.08.078.

    Article  CAS  Google Scholar 

  43. Jung WJ, Park RD. Bioproduction of chitooligosaccharides: present and perspectives. Mar Drugs. 2014;12(11):5328–56. https://doi.org/10.3390/md12115328.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  44. Song S, Zhou H, Li X, Wang L, Li Y, Wang J. Advance of glucosamine and their derivatives as chiral ligands in asymmetric syntheses. Chin J Org Chem. 2014;34(4):706–16. https://doi.org/10.6023/cjoc201310015.

    Article  CAS  Google Scholar 

  45. Zhang B, Wang D-F, Li H-Y, Xu Y, Zhang L. Preparation and properties of chitosan–soybean trypsin inhibitor blend film with anti-Aspergillus flavus activity. Ind Crop Prod. 2009;29(2–3):541–8. https://doi.org/10.1016/j.indcrop.2008.10.007.

    Article  CAS  Google Scholar 

  46. Glucosamine market analysis, coherent market insights 2020.

    Google Scholar 

  47. Rupley JA. The hydrolysis of chitin by concentrated hydrochloric acid, and the preparation of low-molecular-weight substrates for lysozyme. Biochim Biophys Acta. 1964;83(3):245–55. https://doi.org/10.1016/0926-6526(64)90001-1.

    Article  CAS  PubMed  Google Scholar 

  48. Lee M-Y, Var F, Shin-ya Y, Kajiuchi T, Yang J-W. Optimum conditions for the precipitation of chitosan oligomers with DP 5–7 in concentrated hydrochloric acid at low temperature. Process Biochem. 1999;34(5):493–500. https://doi.org/10.1016/s0032-9592(98)00116-2.

    Article  CAS  Google Scholar 

  49. Xia W, Liu P, Liu J. Advance in chitosan hydrolysis by non-specific cellulases. Bioresour Technol. 2008;99(15):6751–62. https://doi.org/10.1016/j.biortech.2008.01.011.

    Article  CAS  PubMed  Google Scholar 

  50. Einbu A, Grasdalen H, Varum KM. Kinetics of hydrolysis of chitin/chitosan oligomers in concentrated hydrochloric acid. Carbohydr Res. 2007;342(8):1055–62. https://doi.org/10.1016/j.carres.2007.02.022.

    Article  CAS  PubMed  Google Scholar 

  51. Novikov VY. Acid hydrolysis of chitin and chitosan. Russ J Appl Chem. 2004;77(3):484–7. https://doi.org/10.1023/B:RJAC.0000031297.24742.b9.

    Article  CAS  Google Scholar 

  52. Kazami N, Sakaguchi M, Mizutani D, Masuda T, Wakita S, Oyama F, Kawakita M, Sugahara Y. A simple procedure for preparing chitin oligomers through acetone precipitation after hydrolysis in concentrated hydrochloric acid. Carbohydr Polym. 2015;132:304–10. https://doi.org/10.1016/j.carbpol.2015.05.082.

    Article  CAS  PubMed  Google Scholar 

  53. Zechmeister L, Tóth G. Zur Kenntnis der Hydrolyse von Chitin mit Salzsäure (II. Mitteil.). Berichte der deutschen chemischen Gesellschaft (A and B Series). 2006;65(2):161–2. https://doi.org/10.1002/cber.19320650209.

    Article  Google Scholar 

  54. Mojarrad JS, Nemati M, Valizadeh H, Ansarin M, Bourbour S. Preparation of glucosamine from exoskeleton of shrimp and predicting production yield by response surface methodology. J Agric Food Chem. 2007;55(6):2246–50. https://doi.org/10.1021/jf062983a.

    Article  CAS  PubMed  Google Scholar 

  55. Ajavakom A, Supsvetson S, Somboot A, Sukwattanasinitt M. Products from microwave and ultrasonic wave assisted acid hydrolysis of chitin. Carbohydr Polym. 2012;90(1):73–7. https://doi.org/10.1016/j.carbpol.2012.04.064.

    Article  CAS  PubMed  Google Scholar 

  56. Villa-Lerma G, Gonzalez-Marquez H, Gimeno M, Lopez-Luna A, Barzana E, Shirai K. Ultrasonication and steam-explosion as chitin pretreatments for chitin oligosaccharide production by chitinases of Lecanicillium lecanii. Bioresour Technol. 2013;146:794–8. https://doi.org/10.1016/j.biortech.2013.08.003.

    Article  CAS  PubMed  Google Scholar 

  57. Yang W, Wang H, Zhou J, Wu S. Hydrolysis kinetics and mechanism of chitin in subcritical water. J Supercrit Fluids. 2018;135:254–62. https://doi.org/10.1016/j.supflu.2018.01.029.

    Article  CAS  Google Scholar 

  58. Zhang X, Mao Y, Briber RM. Efficient production of oligomeric chitin with narrow distributions of degree of polymerization using sonication-assisted phosphoric acid hydrolysis. Carbohydr Polym. 2022;276:118736. https://doi.org/10.1016/j.carbpol.2021.118736.

    Article  CAS  PubMed  Google Scholar 

  59. Guo M, Wei X, Chen S, Xiao J, Huang D. Enhancing nonspecific enzymatic hydrolysis of chitin to oligosaccharides pretreated by acid and green solvents under simultaneous microwave-radiation. Int J Biol Macromol. 2022;209(Pt A):631–41. https://doi.org/10.1016/j.ijbiomac.2022.04.032.

    Article  CAS  PubMed  Google Scholar 

  60. Abidin MZ, Junqueira-Gonçalves MP, Khutoryanskiy VV, Niranjan K. Intensifying chitin hydrolysis by adjunct treatments - an overview. J Chem Technol Biotechnol. 2017;92(11):2787–98. https://doi.org/10.1002/jctb.5208.

    Article  CAS  Google Scholar 

  61. Hou F, Ma X, Fan L, Wang D, Ding T, Ye X, Liu D. Enhancement of chitin suspension hydrolysis by a combination of ultrasound and chitinase. Carbohydr Polym. 2020;231:115669. https://doi.org/10.1016/j.carbpol.2019.115669.

    Article  CAS  PubMed  Google Scholar 

  62. Duan B, Zheng X, Xia Z, Fan X, Guo L, Liu J, Wang Y, Ye Q, Zhang L. Highly biocompatible nanofibrous microspheres self-assembled from chitin in NaOH/urea aqueous solution as cell carriers. Angew Chem Int Ed Engl. 2015;54(17):5152–6. https://doi.org/10.1002/anie.201412129.

    Article  CAS  PubMed  Google Scholar 

  63. Tamura H, Nagahama H, Tokura S. Preparation of chitin hydrogel under mild conditions. Cellulose. 2006;13(4):357–64. https://doi.org/10.1007/s10570-006-9058-z.

    Article  CAS  Google Scholar 

  64. Zhang A, Wei G, Mo X, Zhou N, Chen K, Ouyang P. Enzymatic hydrolysis of chitin pretreated by bacterial fermentation to obtain pure N-acetyl-d-glucosamine. Green Chem. 2018;20(10):2320–7. https://doi.org/10.1039/c8gc00265g.

    Article  CAS  Google Scholar 

  65. Ifuku S, Saimoto H. Chitin nanofibers: preparations, modifications, and applications. Nanoscale. 2012;4(11):3308–18. https://doi.org/10.1039/c2nr30383c.

    Article  CAS  PubMed  Google Scholar 

  66. Zhou N, Yang P, Chen J, Wei G, Wang C, Zhang A, Chen K, Ouyang P. Effect of organic solvents treatment on structure of chitin and its enzymatic hydrolysis. Polym Degrad Stab. 2022;198:109654. https://doi.org/10.1016/j.polymdegradstab.2021.109654.

    Article  CAS  Google Scholar 

  67. Wang Y, Zhang A, Mo X, Zhou N, Yang S, Chen K, Ouyang P. The effect of ultrasonication on enzymatic hydrolysis of chitin to N-acetyl glucosamine via sequential and simultaneous strategies. Process Biochem. 2020;99:265–9. https://doi.org/10.1016/j.procbio.2020.09.013.

    Article  CAS  Google Scholar 

  68. Berton P, Shamshina JL, Ostadjoo S, King CA, Rogers RD. Enzymatic hydrolysis of ionic liquid-extracted chitin. Carbohydr Polym. 2018;199:228–35. https://doi.org/10.1016/j.carbpol.2018.07.014.

    Article  CAS  PubMed  Google Scholar 

  69. Zhai M, Du J, Zhang J, Miao J, Luo J, Cao Y, Duan S. Changes in the microstructure and enzymatic hydrolysis performance of chitin treated by steam explosion, high-pressure homogenization, and γ radiation. J Appl Polym Sci. 2020;137(48):49597. https://doi.org/10.1002/app.49597.

    Article  CAS  Google Scholar 

  70. Dun Y, Li Y, Xu J, Hu Y, Zhang C, Liang Y, Zhao S. Simultaneous fermentation and hydrolysis to extract chitin from crayfish shell waste. Int J Biol Macromol. 2019;123:420–6. https://doi.org/10.1016/j.ijbiomac.2018.11.088.

    Article  CAS  PubMed  Google Scholar 

  71. Cardozo FA, Facchinatto WM, Colnago LA, Campana-Filho SP, Pessoa A. Bioproduction of N-acetyl-glucosamine from colloidal alpha-chitin using an enzyme cocktail produced by Aeromonas caviae CHZ306. World J Microbiol Biotechnol. 2019;35(8):114. https://doi.org/10.1007/s11274-019-2694-x.

    Article  CAS  PubMed  Google Scholar 

  72. Xu P, Wu X-L, Guo X-X, Tang J, Zong M-H, Lou W-Y. Double-chitinase hydrolysis of crab shell chitin pretreated by ionic liquid to generate chito-oligosaccharide. ACS Sustain Chem Eng. 2018;7(1):1683–91. https://doi.org/10.1021/acssuschemeng.8b05447.

    Article  CAS  Google Scholar 

  73. Poshina DN, Raik SV, Poshin AN, Skorik YA. Accessibility of chitin and chitosan in enzymatic hydrolysis: a review. Polym Degrad Stab. 2018;156:269–78. https://doi.org/10.1016/j.polymdegradstab2018.09.005.

    Article  CAS  Google Scholar 

  74. Zhang A, Wang C, Chen J, Wei G, Zhou N, Li G, Chen K, Ouyang P. Efficient enzymatic hydrolysis of chitin into N-acetyl glucosamine using alkali as a recyclable pretreatment reagent. Green Chem. 2021;23(8):3081–9. https://doi.org/10.1039/d1gc00818h.

    Article  CAS  Google Scholar 

  75. Sashiwa H, Fujishima S, Yamano N, Kawasaki N, Nakayama A, Muraki E, Aiba S-I. Production of N-acetyl-D-glucosamine fromβ-chitin by enzymatic hydrolysis. Chem Lett. 2001;30(4):308–9. https://doi.org/10.1246/cl.2001.308.

    Article  Google Scholar 

  76. Husson E, Hadad C, Huet G, Laclef S, Lesur D, Lambertyn V, Jamali A, Gottis S, Sarazin C, Van Nhien AN. The effect of room temperature ionic liquids on the selective biocatalytic hydrolysis of chitin via sequential or simultaneous strategies. Green Chem. 2017;19(17):4122–31. https://doi.org/10.1039/c7gc01471f.

    Article  CAS  Google Scholar 

  77. Carrasquillo-Flores R, Käldström M, Schüth F, Dumesic JA, Rinaldi R. Mechanocatalytic depolymerization of dry (Ligno)cellulose as an entry process for high-yield production of furfurals. ACS Catal. 2013;3(5):993–7. https://doi.org/10.1021/cs4001333.

    Article  CAS  Google Scholar 

  78. Hilgert J, Meine N, Rinaldi R, Schüth F. Mechanocatalytic depolymerization of cellulose combined with hydrogenolysis as a highly efficient pathway to sugar alcohols. Energy Environ Sci. 2013;6(1):92–6. https://doi.org/10.1039/c2ee23057g.

    Article  CAS  Google Scholar 

  79. Meine N, Rinaldi R, Schuth F. Solvent-free catalytic depolymerization of cellulose to water-soluble oligosaccharides. ChemSusChem. 2012;5(8):1449–54. https://doi.org/10.1002/cssc.201100770.

    Article  CAS  PubMed  Google Scholar 

  80. Ribeiro SL, Órfão JJM, Pereira MFR. Enhanced direct production of sorbitol by cellulose ball-milling. Green Chem. 2015;17(5):2973–80. https://doi.org/10.1039/c5gc00039d.

    Article  Google Scholar 

  81. Tabasso S, Carnaroglio D, Calcio Gaudino E, Cravotto G. Microwave, ultrasound and ball mill procedures for bio-waste valorisation. Green Chem. 2015;17(2):684–93. https://doi.org/10.1039/c4gc01545b.

    Article  CAS  Google Scholar 

  82. Kobayashi H, Suzuki Y, Sagawa T, Kuroki K, Hasegawa JY, Fukuoka A. Impact of tensile and compressive forces on the hydrolysis of cellulose and chitin. Phys Chem Chem Phys. 2021;23(30):15908–16. https://doi.org/10.1039/d1cp01650d.

    Article  CAS  PubMed  Google Scholar 

  83. Yabushita M, Kobayashi H, Kuroki K, Ito S, Fukuoka A. Catalytic depolymerization of chitin with retention of N-acetyl group. ChemSusChem. 2015;8(22):3760–3. https://doi.org/10.1002/cssc.201501224.

    Article  CAS  PubMed  Google Scholar 

  84. Margoutidis G, Parsons VH, Bottaro CS, Yan N, Kerton FM. Mechanochemical amorphization of α-chitin and conversion into oligomers of N-acetyl-d-glucosamine. ACS Sustain Chem Eng. 2018;6(2):1662–9. https://doi.org/10.1021/acssuschemeng.7b02870.

    Article  CAS  Google Scholar 

  85. Chen X, Yang H, Zhong Z, Yan N. Base-catalysed one-step mechanochemical conversion of chitin and shrimp shells into low molecular weight chitosan. Green Chem. 2017;19(12):2783–92. https://doi.org/10.1039/C7GC00089H.

    Article  CAS  Google Scholar 

  86. Khan FI, Rahman S, Queen A, Ahamad S, Ali S, Kim J, Hassan MI. Implications of molecular diversity of chitin and its derivatives. Appl Microbiol Biotechnol. 2017;101(9):3513–36. https://doi.org/10.1007/s00253-017-8229-1.

    Article  CAS  PubMed  Google Scholar 

  87. Pierson Y, Chen X, Bobbink FD, Zhang J, Yan N. Acid-catalyzed chitin liquefaction in ethylene glycol. ACS Sustain Chem Eng. 2014;2(8):2081–9. https://doi.org/10.1021/sc500334b.

    Article  CAS  Google Scholar 

  88. Zhang J, Yan N. Formic acid-mediated liquefaction of chitin. Green Chem. 2016;18(18):5050–8. https://doi.org/10.1039/c6gc01053a.

    Article  CAS  Google Scholar 

  89. Zhang Z, Li C, Wang Q, Zhao ZK. Efficient hydrolysis of chitosan in ionic liquids. Carbohydr Polym. 2009;78(4):685–9. https://doi.org/10.1016/j.carbpol.2009.06.002.

    Article  CAS  Google Scholar 

  90. Luterbacher JS, Rand JM, Alonso DM, Han J, Youngquist JT, Maravelias CT, Pfleger BF, Dumesic JA. Nonenzymatic sugar production from biomass using biomass-derived gamma-valerolactone. Science. 2014;343(6168):277–80. https://doi.org/10.1126/science.1246748.

    Article  CAS  PubMed  Google Scholar 

  91. Chen Q, Xiao W, Zhou L, Wu T, Wu Y. Hydrolysis of chitosan under microwave irradiation in ionic liquids promoted by sulfonic acid-functionalized ionic liquids. Polym Degrad Stab. 2012;97(1):49–53. https://doi.org/10.1016/j.polymdegradstab.2011.10.014.

    Article  CAS  Google Scholar 

  92. Zhang J, Yan N. Production of glucosamine from chitin by co-solvent promoted hydrolysis and deacetylation. ChemCatChem. 2017;9(14):2790–6. https://doi.org/10.1002/cctc.201601715.

    Article  CAS  Google Scholar 

  93. Gözaydın G, Song S, Yan N. Chitin hydrolysis in acidified molten salt hydrates. Green Chem. 2020;22(15):5096–104. https://doi.org/10.1039/D0GC01464H.

    Article  Google Scholar 

  94. Deng W, Wang Y, Yan N. Production of organic acids from biomass resources. Curr Opin Green Sustain Chem. 2016;2:54–8. https://doi.org/10.1016/j.cogsc.2016.10.002.

    Article  Google Scholar 

  95. He J, Chen L, Liu S, Song K, Yang S, Riisager A. Sustainable access to renewable N-containing chemicals from reductive amination of biomass-derived platform compounds. Green Chem. 2020;22(20):6714–47. https://doi.org/10.1039/d0gc01869d.

    Article  CAS  Google Scholar 

  96. Jackson RFW. Recent developments in the application of organometallic chemistry to amino acid synthesis. In: Asymmetric synthesis and application of α-amino acids. American Chemical Society; 2009. p. 2–12.

    Google Scholar 

  97. Ager DJ, Lefort L, de Vries JG. ChemInform abstract: catalyst screening for the synthesis of amino acids. ChemInform. 2010;41(1) https://doi.org/10.1002/chin.201001236.

  98. Yan N, Wang Y. Catalyst: is the amino acid a new frontier for biorefineries? Chem. 2019;5(4):739–41. https://doi.org/10.1016/j.chempr.2019.03.016.

    Article  CAS  Google Scholar 

  99. Chen X, Yang H, Yan N. Shell biorefinery: dream or reality? Chemistry. 2016;22(38):13402–21. https://doi.org/10.1002/chem.201602389.

    Article  CAS  PubMed  Google Scholar 

  100. Chen X, Yan N. Conversion of chitin to nitrogen-containing chemicals. In: Chemical catalysts for biomass upgrading; 2020. p. 569–90. https://doi.org/10.1002/9783527814794.ch14.

    Chapter  Google Scholar 

  101. Zhang H, Lu Y, Wang Y, Zhang X, Wang T. D-glucosamine production from chitosan hydrolyzation over a glucose-derived solid acid catalyst. RSC Adv. 2018;8(10):5608–13. https://doi.org/10.1039/c7ra12490b.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  102. Jimenez-Gomez CP, Cecilia JA. Chitosan: a natural biopolymer with a wide and varied range of applications. Molecules. 2020;25(17):3981. https://doi.org/10.3390/molecules25173981.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  103. Philippe M, Ebenhan-Nappe C. Use of carbohydrates for promoting skin desquamation. OREAL; 1998. (US19980043914)

    Google Scholar 

  104. Park KH. A stereospecific synthesis of (+)-2-epideoxymannojirimycin and (2r,3r,4r,5r)-3,4,5-trihydroxypipecolic acid. Bull Korean Chem Soc. 1995;16(10):985–8.

    CAS  Google Scholar 

  105. Varela O, Nin AP, de Lederkremer RM. A short synthesis of (2S,4S,5R)-4,5,6-trihydroxynorleucine. Tetrahedron Lett. 1994;35(50):9359–62. https://doi.org/10.1016/s0040-4039(00)78542-x.

    Article  CAS  Google Scholar 

  106. Kelebekli L, Çelik M, Şahin E, Kara Y, Balci M. Stereospecific synthesis of a new class of aminocyclitol with the conduramine D-2 configuration. Tetrahedron Lett. 2006;47(39):7031–5. https://doi.org/10.1016/j.tetlet.2006.07.108.

    Article  CAS  Google Scholar 

  107. Ou SJ, Chen G, Lin ZH, Bai ZP, Duan CY, Mao CP. Chromium(III) complexes of D-glucosaminic acid and their effect on decreasing blood sugar in vivo. Arch Pharm (Weinheim). 2006;339(9):527–30. https://doi.org/10.1002/ardp.200600053.

    Article  CAS  PubMed  Google Scholar 

  108. Zhang J, Xia W, Liu P, Cheng Q, Tahirou T, Gu W, Li B. Chitosan modification and pharmaceutical/biomedical applications. Mar Drugs. 2010;8(7):1962–87. https://doi.org/10.3390/md8071962.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  109. Miyazaki M, Senshu T, Tamura Z. Metal complexes of D-glucosamine and its derivatives. VII. Metal complexes of D-glucosaminic acid. Chem Pharm Bull(Tokyo). 1966;14(2):114–7. https://doi.org/10.1248/cpb.14.114.

    Article  CAS  PubMed  Google Scholar 

  110. Ferrari E, Grandi R, Lazzari S, Saladini M. Hg(II)-coordination by sugar-acids: role of the hydroxy groups. J Inorg Biochem. 2005;99(12):2381–6. https://doi.org/10.1016/j.jinorgbio.2005.09.005.

    Article  CAS  PubMed  Google Scholar 

  111. Junicke H, Kluge R, Steinborn D. Synthesis and characterization of novel platinum(IV) complexes with non-functionalized acetylated carbohydrates. J Inorg Biochem. 2000;81(1–2):43–8. https://doi.org/10.1016/s0162-0134(00)00088-x.

    Article  CAS  PubMed  Google Scholar 

  112. Ferrari E, Saladini M. Iron(III) complexing ability of carbohydrate derivatives. J Inorg Biochem. 2004;98(6):1002–8. https://doi.org/10.1016/j.jinorgbio.2004.02.017.

    Article  CAS  PubMed  Google Scholar 

  113. Abtew E, Domb AJ, Basu A. Glycopeptides derived from glucosaminic acid. Polym Chem. 2016;7(27):4447–52. https://doi.org/10.1039/c6py00858e.

    Article  CAS  Google Scholar 

  114. Abtew E, Domb AJ, Basu A. Synthesis of glycopeptides from glucosaminic acid. J Polym Sci A Polym Chem. 2017;55(16):2657–62. https://doi.org/10.1002/pola.28666.

    Article  CAS  Google Scholar 

  115. Zheng Y, Xu D, Zhang L, Chen X. Base-free air oxidation of chitin-derived glucosamine to glucosaminic acid by zinc oxide-supported gold nanoparticles. Chem Asian J. 2022;17(18):e202200556. https://doi.org/10.1002/asia.202200556.

    Article  CAS  PubMed  Google Scholar 

  116. Pringsheim H, Ruschmann G. Zur Darstellung der Glucosaminsäure. Ber Dtsch Chem Ges. 2006;48(1):680–2. https://doi.org/10.1002/cber.19150480192.

    Article  Google Scholar 

  117. Wolfrom ML, Cron MJ. Acyl derivatives of D-glucosaminic acid. J Am Chem Soc. 2002;74(7):1715–6. https://doi.org/10.1021/ja01127a030.

    Article  Google Scholar 

  118. Tominaga M, Nagashima M, Taniguchi I. Controlled-potential electrosynthesis of glucosaminic acid from glucosamine at a gold electrode. Electrochem Commun. 2007;9(5):911–4. https://doi.org/10.1016/j.elecom.2006.11.024.

    Article  CAS  Google Scholar 

  119. Wen-xiu G, Wen-shui X. Catalytic synthesis of D-glucosaminic acid from D-glucosamine on active charcoal-supported Pd-bi catalysts. J Carbohydr Chem. 2006;25(4):297–301. https://doi.org/10.1080/07328300600723757.

    Article  CAS  Google Scholar 

  120. Ohmi Y, Nishimura S, Ebitani K. Synthesis of alpha-amino acids from glucosamine-HCl and its derivatives by aerobic oxidation in water catalyzed by Au nanoparticles on basic supports. ChemSusChem. 2013;6(12):2259–62. https://doi.org/10.1002/cssc.201300303.

    Article  CAS  PubMed  Google Scholar 

  121. Dai J, Gözaydın G, Hu C, Yan N. Catalytic conversion of chitosan to glucosaminic acid by tandem hydrolysis and oxidation. ACS Sustain Chem Eng. 2019;7(14):12399–407. https://doi.org/10.1021/acssuschemeng.9b01912.

    Article  CAS  Google Scholar 

  122. Techikawara K, Kobayashi H, Fukuoka A. Conversion of N-acetylglucosamine to protected amino acid over Ru/C catalyst. ACS Sustain Chem Eng. 2018;6(9):12411–8. https://doi.org/10.1021/acssuschemeng.8b02951.

    Article  CAS  Google Scholar 

  123. Ma X, Gozaydin G, Yang H, Ning W, Han X, Poon NY, Liang H, Yan N, Zhou K. Upcycling chitin-containing waste into organonitrogen chemicals via an integrated process. Proc Natl Acad Sci U S A. 2020;117(14):7719–28. https://doi.org/10.1073/pnas.1919862117.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  124. Liu B, Zhang Z. One-pot conversion of carbohydrates into furan derivatives via furfural and 5-hydroxylmethylfurfural as intermediates. ChemSusChem. 2016;9(16):2015–36. https://doi.org/10.1002/cssc.201600507.

    Article  CAS  PubMed  Google Scholar 

  125. Liu Y, Stähler C, Murphy JN, Furlong BJ, Kerton FM. Formation of a renewable amine and an alcohol via transformations of 3-Acetamido-5-acetylfuran. ACS Sustain Chem Eng. 2017;5(6):4916–22. https://doi.org/10.1021/acssuschemeng.7b00323.

    Article  CAS  Google Scholar 

  126. Pham TT, Chen X, Yan N, Sperry J. A novel dihydrodifuropyridine scaffold derived from ketones and the chitin-derived heterocycle 3-acetamido-5-acetylfuran. Monatshefte für Chemie-Chemical Monthly. 2017;149(4):857–61. https://doi.org/10.1007/s00706-017-2112-8.

    Article  CAS  Google Scholar 

  127. Pham TT, Lindsay AC, Kim SW, Persello L, Chen X, Yan N, Sperry J. Two-step preparation of diverse 3-Amidofurans from chitin. ChemistrySelect. 2019;4(34):10097–9. https://doi.org/10.1002/slct.201902765.

    Article  CAS  Google Scholar 

  128. Pham TT, Gözaydın G, Söhnel T, Yan N, Sperry J. Oxidative ring-expansion of a chitin-derived platform enables access to unexplored 2-amino sugar chemical space. Eur J Org Chem. 2019;2019(6):1355–60. https://doi.org/10.1002/ejoc.201801683.

    Article  CAS  Google Scholar 

  129. Pham, T.T., X. Chen, T. Söhnel, N. Yan, and J. Sperry, Haber-independent, diversity-oriented synthesis of nitrogen compounds from biorenewable chitin. Green Chem, 2020, 22(6): 1978–1984.doi:https://doi.org/10.1039/D0GC00208A.

    Book  Google Scholar 

  130. Wolter FE, Schneider K, Davies BP, Socher ER, Nicholson G, Seitz O, Sussmuth RD. Total synthesis of proximicin A-C and synthesis of new furan-based DNA binding agents. Org Lett. 2009;11(13):2804–7. https://doi.org/10.1021/ol901003p.

    Article  CAS  PubMed  Google Scholar 

  131. Brucoli F, Natoli A, Marimuthu P, Borrello MT, Stapleton P, Gibbons S, Schatzlein A. Efficient synthesis and biological evaluation of proximicins A, B and C. Bioorg Med Chem. 2012;20(6):2019–24. https://doi.org/10.1016/j.bmc.2012.01.043.

    Article  CAS  PubMed  Google Scholar 

  132. Sadiq AD, Chen X, Yan N, Sperry J. Towards the shell biorefinery: sustainable synthesis of the anticancer alkaloid proximicin A from chitin. ChemSusChem. 2018;11(3):532–5. https://doi.org/10.1002/cssc.201702356.

    Article  CAS  PubMed  Google Scholar 

  133. Kikuchi H, Saito Y, Komiya J, Takaya Y, Honma S, Nakahata N, Ito A, Oshima Y. Furanodictine A and B: amino sugar analogues produced by cellular slime mold dictyostelium discoideum showing neuronal differentiation activity. J Org Chem. 2001;66(21):6982–7. https://doi.org/10.1021/jo015657x.

    Article  CAS  PubMed  Google Scholar 

  134. Noren-Muller A, Reis-Correa I Jr, Prinz H, Rosenbaum C, Saxena K, Schwalbe HJ, Vestweber D, Cagna G, Schunk S, Schwarz O, Schiewe H, Waldmann H. Discovery of protein phosphatase inhibitor classes by biology-oriented synthesis. Proc Natl Acad Sci U S A. 2006;103(28):10606–11. https://doi.org/10.1073/pnas.0601490103.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  135. Chen X, Liu Y, Kerton FM, Yan N. Conversion of chitin and N-acetyl-d-glucosamine into a N-containing furan derivative in ionic liquids. RSC. Advances. 2015;5(26):20073–80. https://doi.org/10.1039/C5RA00382B.

    Article  CAS  Google Scholar 

  136. Ogata M, Hattori T, Takeuchi R, Usui T. Novel and facile synthesis of furanodictines A and B based on transformation of 2-acetamido-2-deoxy-D-glucose into 3,6-anhydro hexofuranoses. Carbohydr Res. 2010;345(2):230–4. https://doi.org/10.1016/j.carres.2009.10.007.

    Article  CAS  PubMed  Google Scholar 

  137. Osada M, Kikuta K, Yoshida K, Totani K, Ogata M, Usui T. Non-catalytic synthesis of chromogen I and III from N-acetyl-d-glucosamine in high-temperature water. Green Chem. 2013;15(10):2960–6. https://doi.org/10.1039/c3gc41161c.

    Article  CAS  Google Scholar 

  138. Osada M, Shoji S, Suenaga S, Ogata M. Conversion of N-acetyl-d-glucosamine to nitrogen-containing chemicals in high-temperature water. Fuel Process Technol. 2019;195:106154. https://doi.org/10.1016/j.fuproc.2019.106154.

    Article  CAS  Google Scholar 

  139. Fu X, Dai J, Guo X, Tang J, Zhu L, Hu C. Suppression of oligomer formation in glucose dehydration by CO2 and tetrahydrofuran. Green Chem. 2017;19(14):3334–43. https://doi.org/10.1039/c7gc01115f.

    Article  CAS  Google Scholar 

  140. Franich RA, Goodin SJ, Wilkins AL. Acetamidofurans, acetamidopyrones, and acetamidoacetaldehyde from pyrolysis of chitin and n-acetylglucosamine. J Anal Appl Pyrolysis. 1984;7(1–2):91–100. https://doi.org/10.1016/0165-2370(84)80043-1.

    Article  CAS  Google Scholar 

  141. Chen J, Wang M, Ho C-T. Volatile compounds generated from thermal degradation of N-acetylglucosamine. J Agric Food Chem. 1998;46(8):3207–9.

    Article  CAS  Google Scholar 

  142. Drover MW, Omari KW, Murphy JN, Kerton FM. Formation of a renewable amide, 3-acetamido-5-acetylfuran, via direct conversion of N-acetyl-d-glucosamine. RSC. Advances. 2012;2(11):4642–4. https://doi.org/10.1039/c2ra20578e.

    Article  CAS  Google Scholar 

  143. Chen X, Gao Y, Wang L, Chen H, Yan N. Effect of treatment methods on chitin structure and its transformation into nitrogen-containing chemicals. ChemPlusChem. 2015;80(10):1565–72. https://doi.org/10.1002/cplu.201500326.

    Article  CAS  PubMed  Google Scholar 

  144. Wang J, Zang H, Jiao S, Wang K, Shang Z, Li H, Lou J. Efficient conversion of N-acetyl-D-glucosamine into nitrogen-containing compound 3-acetamido-5-acetylfuran using amino acid ionic liquid as the recyclable catalyst. Sci Total Environ. 2020;710:136293. https://doi.org/10.1016/j.scitotenv.2019.136293.

    Article  CAS  PubMed  Google Scholar 

  145. Padovan D, Kobayashi H, Fukuoka A. Facile preparation of 3-Acetamido-5-acetylfuran from N-acetyl-d-glucosamine by using commercially available aluminum salts. ChemSusChem. 2020;13(14):3594–8. https://doi.org/10.1002/cssc.202001068.

    Article  CAS  PubMed  Google Scholar 

  146. Zang H, Lou J, Jiao S, Li H, Du Y, Wang J. Valorization of chitin derived N-acetyl-D-glucosamine into high valuable N-containing 3-acetamido-5-acetylfuran using pyridinium-based ionic liquids. J Mol Liq. 2021;330:115667. https://doi.org/10.1016/j.molliq.2021.115667.

    Article  CAS  Google Scholar 

  147. Wu C, Wang C, Zhang A, Chen K, Cao F, Ouyang P. Preparation of 3-aceta mido-5-acetylfuran from N-acetylglucosamine and chitin using biobased deep eutectic solvents as catalysts. React Chem Eng. 2022;7:1742–9. https://doi.org/10.1039/d2re00118g.

    Article  CAS  Google Scholar 

  148. Chen K, Wu C, Wang C, Zhang A, Cao F, Ouyang P. Chemo-enzymatic protocol converts chitin into a nitrogen-containing furan derivative, 3-acetamido-5-acetylfuran. Mol Catal. 2021;516:112001. https://doi.org/10.1016/j.mcat.2021.112001.

    Article  CAS  Google Scholar 

  149. Chen X, Chew SL, Kerton FM, Yan N. Direct conversion of chitin into a N-containing furan derivative. Green Chem. 2014;16(4):2204–12. https://doi.org/10.1039/c3gc42436g.

    Article  CAS  Google Scholar 

  150. Omari KW, Besaw JE, Kerton FM. Hydrolysis of chitosan to yield levulinic acid and 5-hydroxymethylfurfural in water under microwave irradiation. Green Chem. 2012;14(5):1480–7. https://doi.org/10.1039/c2gc35048c.

    Article  CAS  Google Scholar 

  151. Zhu X, Lobban LL, Mallinson RG, Resasco DE. Bifunctional transalkylation and hydrodeoxygenation of anisole over a Pt/HBeta catalyst. J Catal. 2011;281(1):21–9.

    Article  CAS  Google Scholar 

  152. Osada M, Kobayashi H, Miyazawa T, Suenaga S, Ogata M. Non-catalytic conversion of chitin into Chromogen I in high-temperature water. Int J Biol Macromol. 2019;136:994–9. https://doi.org/10.1016/j.ijbiomac.2019.06.123.

    Article  CAS  PubMed  Google Scholar 

  153. Zang H, Li H, Jiao S, Lou J, Du Y, Huang N. Green conversion of N-Acetylglucosamine into valuable platform compound 3-acetamido-5-acetylfuran using ethanolamine ionic liquids as recyclable catalyst. ChemistrySelect. 2021;6(16):3848–57. https://doi.org/10.1002/slct.202100231.

    Article  CAS  Google Scholar 

  154. Gao X, Chen X, Zhang J, Guo W, Jin F, Yan N. Transformation of chitin and waste shrimp shells into acetic acid and pyrrole. ACS Sustain Chem Eng. 2016;4(7):3912–20. https://doi.org/10.1021/acssuschemeng.6b00767.

    Article  CAS  Google Scholar 

  155. Liang B, Deng Y, Liang X, Cai X, Zhang Y, Yin Y, Hu H, Huang Z, Qin Y. Enhancement of hydrothermal carbonization of chitin by combined pretreatment of mechanical activation and FeCl3. Int J Biol Macromol. 2021;189:242–50. https://doi.org/10.1016/j.ijbiomac.2021.08.125.

    Article  CAS  PubMed  Google Scholar 

  156. Qi M, Chen X, Zhong H, Wu J, Jin F. Base-free, vanadium-catalyzed conversion of chitin into acetic acid under low oxygen pressure. ACS Sustain Chem Eng. 2020;8(50):18661–70. https://doi.org/10.1021/acssuschemeng.0c07147.

    Article  CAS  Google Scholar 

  157. Liang Q, Su H, Yan J, Leung C, Cao S, Yuan D. N-doped mesoporous carbon as a bifunctional material for oxygen reduction reaction and supercapacitors. Chin J Catal. 2014;35(7):1078–83. https://doi.org/10.1016/s1872-2067(14)60044-9.

    Article  CAS  Google Scholar 

  158. Sagawa T, Kobayashi H, Murata C, Shichibu Y, Konishi K, Fukuoka A. Catalytic conversion of a chitin-derived sugar alcohol to an amide-containing isosorbide analog. ACS Sustain Chem Eng. 2019;7(17):14883–8. https://doi.org/10.1021/acssuschemeng.9b02985.

    Article  CAS  Google Scholar 

  159. Sagawa T, Kobayashi H, Fukuoka A. Effect of Lewis acid on catalytic dehydration of a chitin-derived sugar alcohol. Mol Catal. 2020;498:111282. https://doi.org/10.1016/j.mcat.2020.111282.

    Article  CAS  Google Scholar 

  160. Yang C, Sagawa T, Fukuoka A, Kobayashi H. Characteristic activity of phosphorous acid in the dehydration condensation of a chitin-derived nitrogen-containing sugar alcohol. Green Chem. 2021;23(18):7228–34. https://doi.org/10.1039/d1gc02193a.

    Article  CAS  Google Scholar 

  161. Kobayashi H, Techikawara K, Fukuoka A. Hydrolytic hydrogenation of chitin to amino sugar alcohol. Green Chem. 2017;19(14):3350–6. https://doi.org/10.1039/c7gc01063j.

    Article  CAS  Google Scholar 

  162. Osada M, Kikuta K, Yoshida K, Totani K, Ogata M, Usui T. Non-catalytic dehydration of N,N′-diacetylchitobiose in high-temperature water. RSC Adv. 2014;4(64):33651–7. https://doi.org/10.1039/c4ra06319h.

    Article  CAS  Google Scholar 

  163. Fujii S, Kikuchi R, Kushida H. Formation of fructosazine. J Org Chem. 2002;31(7):2239–41. https://doi.org/10.1021/jo01345a036.

    Article  Google Scholar 

  164. Rohovec J, Kotek J, Peters JA, Maschmeyer T. A clean conversion of D-glucosamine hydrochloride to a pyrazine in the presence of phenylboronate or borate. Eur J Org Chem. 2001;2001(20):3899–901. https://doi.org/10.1002/1099-0690(200110)2001:20<3899::Aid-ejoc3899>3.0.Co;2-g.

    Article  Google Scholar 

  165. Jia L, Wang Y, Qiao Y, Qi Y, Hou X. Efficient one-pot synthesis of deoxyfructosazine and fructosazine fromd-glucosamine hydrochloride using a basic ionic liquid as a dual solvent-catalyst. RSC Adv. 2014;4(83):44253–60. https://doi.org/10.1039/c4ra06832g.

    Article  CAS  Google Scholar 

  166. Jia L, Pedersen CM, Qiao Y, Deng T, Zuo P, Ge W, Qin Z, Hou X, Wang Y. Glucosamine condensation catalyzed by 1-ethyl-3-methylimidazolium acetate: mechanistic insight from NMR spectroscopy. Phys Chem Chem Phys. 2015;17(35):23173–82. https://doi.org/10.1039/c5cp02169c.

    Article  CAS  PubMed  Google Scholar 

  167. Jia L, Zhang Z, Qiao Y, Pedersen CM, Ge H, Wei Z, Deng T, Ren J, Liu X, Wang Y, Hou X. Product distribution control for glucosamine condensation: nuclear magnetic resonance (NMR) investigation substantiated by density functional calculations. Ind Eng Chem Res. 2017;56(11):2925–34. https://doi.org/10.1021/acs.iecr.6b05057.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xi Chen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zheng, Y., Wang, Y., Chen, X. (2023). Waste Shell Biorefinery: Sustainable Production of Organonitrogen Chemicals. In: Fang, Z., Smith Jr, R.L., Xu, L. (eds) Production of N-containing Chemicals and Materials from Biomass. Biofuels and Biorefineries, vol 12. Springer, Singapore. https://doi.org/10.1007/978-981-99-4580-1_4

Download citation

Publish with us

Policies and ethics