Skip to main content

Evaluating the Role of Gasification Stages on Evolution of Fuel-N to Deepen in Sustainable Production of NH3

  • Chapter
  • First Online:
Production of N-containing Chemicals and Materials from Biomass

Part of the book series: Biofuels and Biorefineries ((BIOBIO,volume 12))

  • 153 Accesses

Abstract

In this chapter, pyrolysis of meat and bone meal (MBM) with two types of reactors and gasification of produced pyrolysis char under different atmospheres are shown for estimating contributions to fuel-N distribution from MBM gasification. Formation of the main nitrogen-containing (N-containing) compounds was studied: char-N, tar-N, NH3-N, HCN-N and N2-N. Argon was used in pyrolysis experiments and argon+O2 and argon+O2 + steam mixtures were used for char gasification that allowed quantification of N2 generated. The experimental results showed that NH3 formation was hardly affected by pyrolysis temperature in the studied range from 600 °C to 800 °C or by the reactor type (fixed or fluidized). However, on the matter of tar-N yield, the range and type of reactor greatly affected its production from 21% at 600 °C for fixed beds to 3% at 800 °C in the fluidized bed. Pyrolysis char gasification using steam as one of the gasifying agents greatly affects NH3 production, from 0.1% with O2 + Ar to 13.8% with O2 + Ar + steam. The most abundant N-containing compound obtained in the pyrolysis step was NH3 (33–35%). For the char gasification step, the most abundant N-containing compounds were N2 (35–45%) and NH3 (13.8%). An extensive analysis of tar-N was performed that allowed point relevant differences to be determined between the tar-N composition of pyrolysis at 600 °C in the fixed bed and at 800 °C in the fluidized bed. Neither HCN nor NO were obtained in appreciable quantities in this work. The results obtained throughout the experiments explains 50% of the NH3 and N2 yields on the overall MBM gasification process. Among the stages studied, the pyrolysis stage and char gasification in the presence of steam contribute significantly to NH3 production, although the tar-N cracking and reforming reactions could also have a noteworthy effect on NH3 production.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

%:

used when the percentage is the same referred to moles or mass, as for example un fuel-N distribution

ATR-FTIR:

attenuated total reflection—fourier transform infrared

BAT:

Best available techniques

DKP:

Diketopiperazines

GasArO2:

Char gasification at 800 °C with Ar and O2

GasArO2H2O:

Char gasification at 800 °C with Ar, O2 and H2O

GC-MS:

Gas chromatography-mass spectrometry

GJ:

Giga Joule

HACA:

Hydrogen abstraction acetylene addition

MBM:

Meat and bone meal

Mt.:

Million tonnes

PAH:

Polycyclic aromatic hydrocarbons

Pyr600Fix:

Pyrolysis at 600 °C in fixed bed

Pyr600Flu:

Pyrolysis at 600 °C in fluidized bed

Pyr800Flu:

Pyrolysis at 800 °C in fluidized bed

STP:

Standard temperature and pressure (0 °C and 1 atm)

vol%:

vol percentage

wt%:

Weight percentage

References

  1. The Royal Society (2020) Green ammonia. Ammonia: zero-carbon fertiliser, fuel and energy store. (2020) policy briefing. ISBN: 978–1–78252-448-9.

    Google Scholar 

  2. Meng F, Wagner A, Kremer AB, Kanazawa D, Leung JJ, Goult P, Guan M, Herrman S, Spellman E, Sauter P, Lingeswaran S, Stuchtey MM, Hansen K, Masanet E, Serrenho AC, Ishii N, Kikuchi Y, Cullen JM. Planet compatible pathways for transitioning the chemical industry. Cambridge Open Engage-ChemRxiv. 2022;120(8):e2218294120. https://doi.org/10.26434/chemrxiv-2022-hx17h.

    Article  Google Scholar 

  3. Rafiqul I, Weber C, Lehmann B, Voss A. Energy efficiency improvements in ammonia production—perspectives and uncertainties. Energy. 2005;30:2487–504. https://doi.org/10.1016/j.energy.2004.12.004.

    Article  CAS  Google Scholar 

  4. International Energy Agency. (2021) Ammonia technology roadmap. https://www.iea.org/reports/ammonia-technology-roadmap. Accessed 27 Jan 2023.

    Book  Google Scholar 

  5. European Food Safety Authority (2022) Animal by-products. https://www.efsa.europa.eu/en/topics/animal-by-products. Accessed 27 Jan 2023.

    Google Scholar 

  6. Food Safety–European Commission (2022) Approved establishments - ABP. https://food.ec.europa.eu/safety/animal-products/approved-establishments-abp_en. Accessed 26 Jan 2023.

    Google Scholar 

  7. United Kingdom Government (2023) Animal by-product operating plants: approved premises - GOV.UK. https://www.gov.uk/government/publications/animal-by-product-operating-plants-approved-premises. Accessed 27 Jan 2023.

    Google Scholar 

  8. Gil-Lalaguna N, Afailal Z, Aznar M, Fonts I. Exploring the sustainable production of ammonia by recycling N and H in biological residues: evolution of fuel-N during glutamic acid gasification. J Clean Prod. 2020;282:124417. https://doi.org/10.1016/j.jclepro.2020.124417.

    Article  CAS  Google Scholar 

  9. Campoy M, Gómez-Barea A, Ollero P, Nilsson S. Gasification of wastes in a pilot fluidized bed gasifier. Fuel Process Technol. 2014;121:63–9. https://doi.org/10.1016/j.fuproc.2013.12.019.

    Article  CAS  Google Scholar 

  10. Marculescu C, Alexe F. Assessing the power generation solution by thermal-chemical conversion of meat processing industry waste. Energy Procedia. 2014;50:738–43. https://doi.org/10.1016/J.EGYPRO.2014.06.091.

    Article  CAS  Google Scholar 

  11. Soni CG, Dalai AK, Pugsley T, Fonstad T. Steam gasification of meat and bone meal in a two-stage fixed-bed reactor system. Asia-Pacific J Chem Eng. 2011;6:71–7. https://doi.org/10.1002/apj.454.

    Article  CAS  Google Scholar 

  12. Wang P, Shen C, Wang B, Xu P, Shen L. Ammonia production from nitrogen-rich biomass gasification: nitrogen transformation from model amino acids. Fuel. 2022;326:125071. https://doi.org/10.1016/J.FUEL.2022.125071.

    Article  CAS  Google Scholar 

  13. Wang P, Xu P, Shen C, Wang B, Shen L, Song T. Green ammonia production via microalgae steam catalytic gasification process over LaFeO3 perovskite. SSRN Electron J. 2022;318:123322. https://doi.org/10.2139/SSRN.3978731.

    Article  CAS  Google Scholar 

  14. Niu X, Shen L. Evolution of carbon and nitrogen during chemical looping gasification of rapeseed cake with Ca-Fe oxygen carrier. Chem Eng J. 2022;431:134232. https://doi.org/10.1016/J.CEJ.2021.134232.

    Article  CAS  Google Scholar 

  15. Wang P, Xu P, Shen L. Promotional effect of Ca on La1-xCaxFeO3 perovskites for ammonia production via steam catalytic gasification of microalgae. Chem Eng J. 2023;455:140483. https://doi.org/10.1016/J.CEJ.2022.140483.

    Article  CAS  Google Scholar 

  16. Wang P, Yan J, Wang S, Xu P, Laihong S, Song T. Synergistic effects of lanthanum ferrite perovskite and hydrogen to promote ammonia production during microalgae catalytic pyrolysis process. Bioresour Technol. 2021;340:125641. https://doi.org/10.1016/J.BIORTECH.2021.125641.

    Article  CAS  PubMed  Google Scholar 

  17. Cascarosa E, Fonts I, Mesa JM, Sánchez JL, Arauzo J. Characterization of the liquid and solid products obtained from the oxidative pyrolysis of meat and bone meal in a pilot-scale fluidised bed plant. Fuel Process Technol. 2011;92:1954–62. https://doi.org/10.1016/J.FUPROC.2011.05.015.

    Article  CAS  Google Scholar 

  18. Gil-Lalaguna N, Sánchez JL, Murillo MB, Ruiz V, Gea G. Air-steam gasification of char derived from sewage sludge pyrolysis. Comparison with the gasification of sewage sludge. Fuel. 2014;129:147–55. https://doi.org/10.1016/j.fuel.2014.03.059.

    Article  CAS  Google Scholar 

  19. Aznar M, San Anselmo M, Manya JJ, Benita Murillo M. Experimental study examining the evolution of nitrogen compounds during the gasification of dried sewage sludge. Energy Fuel. 2009;23:3236–45. https://doi.org/10.1021/ef801108s.

    Article  CAS  Google Scholar 

  20. Lozano M, Rodríguez-Ulibarri P, Echeverría JC, Beruete M, Sorolla M, Beriain MJ. Mid-infrared spectroscopy (MIR) for simultaneous determination of fat and protein content in meat of several animal species. Food Anal Methods. 2017;10:3462–70. https://doi.org/10.1007/S12161-017-0879-1.

    Article  Google Scholar 

  21. Kong J, Yu S. Fourier transform infrared spectroscopic analysis of protein secondary structures. Acta Biochim Biophys Sin Shanghai. 2007;39:549–59. https://doi.org/10.1111/J.1745-7270.2007.00320.X.

    Article  CAS  PubMed  Google Scholar 

  22. Krimm S, Bandekar J. Vibrational spectroscopy and conformation of peptides, polypeptides, and proteins. Adv Protein Chem. 1986;38:181–364. https://doi.org/10.1016/S0065-3233(08)60528-8.

    Article  CAS  PubMed  Google Scholar 

  23. Mujahid M, Sarfraz S, Amin S. On the formation of hydroxyapatite nano crystals prepared using cationic surfactant. Mater Res. 2015;18:468–72. https://doi.org/10.1590/1516-1439.298014.

    Article  CAS  Google Scholar 

  24. Wang P, Wang S, Wang B, Shen L, Song T. Green production of ammonia from nitrogen-rich biomass pyrolysis: evolution of fuel-N under H2-rich atmosphere. Fuel Process Technol. 2022;227:107126. https://doi.org/10.1016/j.fuproc.2021.107126.25.

    Article  CAS  Google Scholar 

  25. Forfang K, Zimmermann B, Kosa G, Kohler A, Shapaval V. FTIR spectroscopy for evaluation and monitoring of lipid extraction efficiency for oleaginous fungi. PLoS One. 2017;12:e0170611. https://doi.org/10.1371/JOURNAL.PONE.0170611.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Oleszko A, Olsztyńska-Janus S, Walski T, Grzeszczuk-Kuć K, Bujok J, Gałecka K, Czerski A, Witkiewicz W, Komorowska M. Application of FTIR-ATR spectroscopy to determine the extent of lipid peroxidation in plasma during haemodialysis. Biomed Res Int. 2015;2015:245607. https://doi.org/10.1155/2015/245607.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Shapaval V, Brandenburg J, Blomqvist J, Tafintseva V, Passoth V, Sandgren M, Kohler A. Biochemical profiling, prediction of total lipid content and fatty acid profile in oleaginous yeasts by FTIR spectroscopy. Biotechnol Biofuels. 2019;12:1–12. https://doi.org/10.1186/S13068-019-1481-0.

    Article  CAS  Google Scholar 

  28. Cestelli Guidi M, Mirri C, Fratini E, Licursi V, Negri R, Marcelli A, Amendola R. In vivo skin leptin modulation after 14 MeV neutron irradiation: a molecular and FT-IR spectroscopic study. Anal Bioanal Chem. 2012;404:1317–26. https://doi.org/10.1007/S00216-012-6018-3.

    Article  CAS  PubMed  Google Scholar 

  29. Mateus T, Almeida I, Costa A, Viegas D, Magalhães S, Martins F, Herdeiro MT, da Cruz E, Silva OAB, Fraga C, Alves I, Nunes A, Rebelo S. Fourier-transform infrared spectroscopy as a discriminatory tool for myotonic dystrophy type 1 metabolism: a pilot study. Int J Environ Res Public Health. 2021;18(7):3800. https://doi.org/10.3390/IJERPH18073800.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Gómez-Ordóñez E, Rupérez P. FTIR-ATR spectroscopy as a tool for polysaccharide identification in edible brown and red seaweeds. Food Hydrocoll. 2011;25:1514–20. https://doi.org/10.1016/J.FOODHYD.2011.02.009.

    Article  Google Scholar 

  31. Wiercigroch E, Szafraniec E, Czamara K, Pacia MZ, Majzner K, Kochan K, Kaczor A, Baranska M, Malek K. Raman and infrared spectroscopy of carbohydrates: a review. Spectrochim Acta A Mol Biomol Spectrosc. 2017;185:317–35. https://doi.org/10.1016/J.SAA.2017.05.045.

    Article  CAS  PubMed  Google Scholar 

  32. Garcia-Nunez JA, Pelaez-Samaniego MR, Garcia-Perez ME, Fonts I, Abrego J, Westerhof RJM, Garcia-Perez M. Historical developments of pyrolysis reactors: a review. Energy Fuel. 2017;31:5751–75. https://doi.org/10.1021/acs.energyfuels.7b00641.

    Article  CAS  Google Scholar 

  33. Ben Hassen-Trabelsi A, Kraiem T, Naoui S, Belayouni H. Pyrolysis of waste animal fats in a fixed-bed reactor: production and characterization of bio-oil and bio-char. Waste Manag. 2014;34:210–8. https://doi.org/10.1016/J.WASMAN.2013.09.019.

    Article  CAS  PubMed  Google Scholar 

  34. Elliott DC. Relation of reaction time and temperature to chemical composition of pyrolysis oils. ACS Symp Ser. 1988;376:55–65. https://doi.org/10.1021/BK-1988-0376.CH006.

    Article  CAS  Google Scholar 

  35. Fonts I, Azuara M, Lázaro L, Gea G, Murillo MB. Gas chromatography study of sewage sludge pyrolysis liquids obtained at different operational conditions in a fluidized bed. Ind Eng Chem Res. 2009;48:5907–15. https://doi.org/10.1021/ie900421a.

    Article  CAS  Google Scholar 

  36. Hansson KM. Principles of biomass pyrolysis with emphasis on the formation of the nitrogen-containing gases HNCO, HCN and NH3. In: Doktorsavhandlingar vid Chalmers Tekniska Hogskola. Gothenburg: Chalmers University of Technology; 2003. p. 1–80. ISBN: 91-7291-349-5.

    Google Scholar 

  37. Benés M, Pozo G, Abián M, Millera A, Bilbao R, Alzueta MU. Experimental study of the pyrolysis of NH3 under flow reactor conditions. Energy Fuel. 2021;35:7193–200. https://doi.org/10.1021/acs.energyfuels.0c03387.

    Article  CAS  Google Scholar 

  38. Maher KD, Bressler DC. Pyrolysis of triglyceride materials for the production of renewable fuels and chemicals. Bioresour Technol. 2007;98:2351–68. https://doi.org/10.1016/J.BIORTECH.2006.10.025.

    Article  CAS  PubMed  Google Scholar 

  39. Simoneit BRT, Rushdi AI, Abas MRB, Didyk BM. Alkyl Amides and Nitriles as Novel Tracers for Biomass Burning. Environ Sci Technol. 2002;37:16–21. https://doi.org/10.1021/ES020811Y.

    Article  Google Scholar 

  40. Moldoveanu SC. Pyrolysis of Organic Molecules with Applications to Health and Environmental Issues. In: Moldoveanu SC, editor. Techniques and Instrumentation in Analytical Chemistry. Winston-Salem: Elsevier; 2009. p. 724. ISBN: 9780444531131.

    Google Scholar 

  41. Ren Q, Zhao C. Evolution of fuel-N in gas phase during biomass pyrolysis. Renew Sust Energ Rev. 2015;50:408–18. https://doi.org/10.1016/j.rser.2015.05.043.

    Article  CAS  Google Scholar 

  42. Munson TO, Vick J. Comparison of human hair by pyrolysis-capillary column gas chromatography and gas chromatography-mass spectrometry. J Anal Appl Pyrolysis. 1985;8:493–501. https://doi.org/10.1016/0165-2370(85)80047-4.

    Article  Google Scholar 

  43. Douda J, Basiuk VA. Pyrolysis of amino acids: recovery of starting materials and yields of condensation products. J Anal Appl Pyrolysis. 2000;56:113–21. https://doi.org/10.1016/S0165-2370(00)00078-4.

    Article  CAS  Google Scholar 

  44. Chiavari G, Galletti GC. Pyrolysis—gas chromatography/mass spectrometry of amino acids. J Anal Appl Pyrolysis. 1992;24:123–37. https://doi.org/10.1016/0165-2370(92)85024-F.

    Article  CAS  Google Scholar 

  45. Saiz-Jimenez C, Martin-Sanchez PM, Gonzalez-Perez JA, Hermosin B. Analytical pyrolysis of the fungal melanins from ochroconis spp. isolated from Lascaux cave, France. Appl Sci. 2021;11:1198. https://doi.org/10.3390/APP11031198.

    Article  CAS  Google Scholar 

  46. Shukla B, Koshi M. A novel route for PAH growth in HACA based mechanisms. Combust Flame. 2012;159:3589–96. https://doi.org/10.1016/J.COMBUSTFLAME.2012.08.007.

    Article  CAS  Google Scholar 

  47. Moreira R, Vaz R, Portugal A, Gil-Lalaguna N, Sánchez JL, Bimbela F. Gasification of Charcoal in Air, Oxygen, and Steam Mixtures over a γ-Al2O3 Fluidized Bed. Energy Fuel. 2018;32:406–15. https://doi.org/10.1021/ACS.ENERGYFUELS.7B02257.

    Article  CAS  Google Scholar 

  48. Gil-Lalaguna N, Sánchez JL, Murillo MB, Rodríguez E, Gea G. Air–steam gasification of sewage sludge in a fluidized bed. Influence of some operating conditions. Chem Eng J. 2014;248:373–82. https://doi.org/10.1016/J.CEJ.2014.03.055.

    Article  CAS  Google Scholar 

  49. Aljbour SH, Kawamoto K. Bench-scale gasification of cedar wood – Part II: Effect of operational conditions on contaminant release. Chemosphere. 2013;90:1501–7. https://doi.org/10.1016/j.chemosphere.2012.08.030.

    Article  CAS  PubMed  Google Scholar 

  50. Körner P. Hydrothermal degradation of amino acids. ChemSusChem. 2021;14:4947. https://doi.org/10.1002/CSSC.202101487.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Schäfer S, Bonn B. Hydrolysis of HCN as an important step in nitrogen oxide formation in fluidised combustion. Part 1. Fuel. 2000;79(10):1239–46. https://doi.org/10.1016/S0016-2361(99)00254-9.

    Article  Google Scholar 

  52. Our World in Data (2017) How many people does synthetic fertilizer feed?. https://ourworldindata.org/how-many-people-does-synthetic-fertilizer-feed. Accessed 16 Sep 2022.

    Google Scholar 

  53. U.S. Geological Survey. Mineral commodity summaries 2023. U.S. Geological Survey; 2023. p. 210. https://doi.org/10.3133/mcs2023.

    Book  Google Scholar 

  54. Eurostat (2022) Sewage sludge production and disposal from urban wastewater in EU. https://ec.europa.eu/eurostat/databrowser/view/ten00030/default/table?lang=en. Accessed 5 Jan 2023.

    Google Scholar 

  55. Fonts I, Gea G, Azuara M, Ábrego J, Arauzo J. Sewage sludge pyrolysis for liquid production: a review. Renew Sust Energ Rev. 2012;16:2781–805. https://doi.org/10.1016/j.rser.2012.02.070.

    Article  CAS  Google Scholar 

  56. Fedorowicz EM, Miller SF, Miller BG. Biomass gasification as a means of carcass and specified risk materials disposal and energy production in the beef rendering and meatpacking industries. Energy Fuel. 2007;21:3225–32. https://doi.org/10.1021/ef7003128.

    Article  CAS  Google Scholar 

  57. Conesa JA, Fullana A, Font R. Thermal decomposition of meat and bone meal. J Anal Appl Pyrolysis. 2003;70:619–30. https://doi.org/10.1016/S0165-2370(03)00044-5.

    Article  CAS  Google Scholar 

  58. Köninger J, Lugato E, Panagos P, Kochupillai M, Orgiazzi A, Briones MJI. Manure management and soil biodiversity: towards more sustainable food systems in the EU. Agric Syst. 2021;194:103251. https://doi.org/10.1016/J.AGSY.2021.103251.

    Article  Google Scholar 

  59. Eurostat (2010) Share of NH3 emissions from livestock manure and agricultural soils in 2010, EU-27. https://ec.europa.eu/eurostat/statistics-explained/index.php?title=File:Share_of_NH3_emissions_from_livestock_manure_and_agricultural_soils_(kilotonnes),_2010,_EU-27.png#file. Accessed 6 Feb 2023.

    Google Scholar 

  60. Eurostat (2021) Annual total production of anhydrous ammonia in 2021 in EU. https://ec.europa.eu/eurostat/databrowser/view/DS-056121__custom_4844612/default/table?lang=en. Accessed 6 Feb 2023.

    Google Scholar 

  61. Eurostat (2022) Mineral nitrogen fertiliser consumption by agriculture in EU. https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Agri-environmental_indicator_-_mineral_fertiliser_consumption. Accessed 6 Feb 2023.

    Google Scholar 

  62. Paris B, Vandorou F, Tyris D, Balafoutis AT, Vaiopoulos K, Kyriakarakos G, Manolakos D, Papadakis G. Energy use in the eu livestock sector: a review recommending energy efficiency measures and renewable energy sources adoption. Appl Sci. 2022;12(4):2142. https://doi.org/10.3390/app12042142.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Isabel Fonts .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Léo, F., Gil-Lalaguna, N., Afailal, Z., Andrade, R., Lora, E., Fonts, I. (2023). Evaluating the Role of Gasification Stages on Evolution of Fuel-N to Deepen in Sustainable Production of NH3. In: Fang, Z., Smith Jr, R.L., Xu, L. (eds) Production of N-containing Chemicals and Materials from Biomass. Biofuels and Biorefineries, vol 12. Springer, Singapore. https://doi.org/10.1007/978-981-99-4580-1_12

Download citation

Publish with us

Policies and ethics