Skip to main content

Preparation of Green N-Doped Biochar Materials with Biomass Pyrolysis and Their Application to Catalytic Systems

  • Chapter
  • First Online:
Production of N-containing Chemicals and Materials from Biomass

Part of the book series: Biofuels and Biorefineries ((BIOBIO,volume 12))

  • 175 Accesses

Abstract

Biomass pyrolysis produces high-value chemical products and is important for developing energy applications. Green nitrogen-doped biochar, which has a porous structure, active nitrogen/oxygen-containing groups, and catalytic sites, can be prepared through activation and nitrogen doping during pyrolysis. In this chapter, preparation methods for green nitrogen-doped biochar materials via pyrolysis are comprehensively reviewed as well as one-step “pyrolysis-activation-doping”. In addition, the formation mechanisms of nitrogen-doped biochars are discussed with their corresponding catalytic properties. There is a need for advanced online characterization methods and detection of the structural evolution of intermediates and radicals during reaction processes. The preparation of green N-doped biochar materials and application in biomass catalytic pyrolysis hold great promise for the economical production of chemical products from biomass.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Liao Y, Koelewijn S-F, Van den Bossche G, Van Aelst J, Van den Bosch S, Renders T, Navare K, Nicolaï T, Van Aelst K, Maesen M, Matsushima H, Thevelein JM, Van Acker K, Lagrain B, Verboekend D, Sels BF. A sustainable wood biorefinery for low–carbon footprint chemicals production. Science. 2020;367:1385–90. https://doi.org/10.1126/science.aau1567.

    Article  CAS  PubMed  Google Scholar 

  2. Liu W-J, Jiang H, Yu H-Q. Development of biochar-based functional materials: toward a sustainable platform carbon material. Chem Rev. 2015;115:12251–85. https://doi.org/10.1021/acs.chemrev.5b00195.

    Article  CAS  PubMed  Google Scholar 

  3. Yang Q, Zhou H, Bartocci P, Fantozzi F, Mašek O, Agblevor FA, Wei Z, Yang H, Chen H, Lu X, Chen G, Zheng C, Nielsen CP, McElroy MB. Prospective contributions of biomass pyrolysis to China’s 2050 carbon reduction and renewable energy goals. Nat Commun. 2021;12:1698. https://doi.org/10.1038/s41467-021-21868-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Lian F, Xing B. Black carbon (biochar) inwater/soil environments: molecular structure, sorption, stability, and potential risk. Environ Sci Technol. 2017;51:13517–32. https://doi.org/10.1021/acs.est.7b02528.

    Article  CAS  PubMed  Google Scholar 

  5. Tian W, Zhang H, Duan X, Sun H, Shao G, Wang S. Porous carbons: structure-oriented design and versatile applications. Adv Funct Mater. 2020;30(17):1909265. https://doi.org/10.1002/adfm.201909265.

    Article  CAS  Google Scholar 

  6. Li D, Chen W, Wu J, Jia CQ, Jiang X. The preparation of waste biomass-derived N-doped carbons and their application in acid gas removal: focus on N functional groups. J Mater Chem A. 2020;8:24977–95. https://doi.org/10.1039/d0ta07977d.

    Article  CAS  Google Scholar 

  7. Chen Q, Tan X, Liu Y, Liu S, Li M, Gu Y, Zhang P, Ye S, Yang Z, Yang Y. Biomass-derived porous graphitic carbon materials for energy and environmental applications. J Mater Chem A. 2020;8:5773–811. https://doi.org/10.1039/C9TA11618D.

    Article  CAS  Google Scholar 

  8. Inagaki M, Toyoda M, Soneda Y, Morishita T. Nitrogen-doped carbon materials. Carbon. 2018;132:104–40. https://doi.org/10.1016/j.carbon.2018.02.024.

    Article  CAS  Google Scholar 

  9. Wang J, Nie P, Ding B, Dong S, Hao X, Dou H, Zhang X. Biomass derived carbon for energy storage devices. J Mater Chem A. 2017;5:2411–28. https://doi.org/10.1039/C6TA08742F.

    Article  CAS  Google Scholar 

  10. Lin T, Chen I-W, Liu F, Yang C, Bi H, Xu F, Huang F. Nitrogen-doped mesoporous carbon of extraordinary capacitance for electrochemical energy storage. Science. 2015;350:1508–13. https://doi.org/10.1126/science.aab3798.

    Article  CAS  PubMed  Google Scholar 

  11. Figueiredo JL, Pereira MFR. The role of surface chemistry in catalysis with carbons. Catal Today. 2010;150:2–7. https://doi.org/10.1016/j.cattod.2009.04.010.

    Article  CAS  Google Scholar 

  12. Wang S, Dai G, Yang H, Luo Z. Lignocellulosic biomass pyrolysis mechanism: a state-of-the-art review. Prog Energy Combust Sci. 2017;62:33–86. https://doi.org/10.1016/j.pecs.2017.05.004.

    Article  Google Scholar 

  13. Che Q, Yang M, Wang X, Chen X, Chen W, Yang Q, Yang H, Chen H. Aromatics production with metal oxides and ZSM-5 as catalysts in catalytic pyrolysis of wood sawdust. Fuel Process Technol. 2019;188:146–52. https://doi.org/10.1016/j.fuproc.2019.02.016.

    Article  CAS  Google Scholar 

  14. Sharifzadeh M, Sadeqzadeh M, Guo M, Borhani TN, Murthy Konda NVSN, Garcia MC, Wang L, Hallett J, Shah N. The multi-scale challenges of biomass fast pyrolysis and bio-oil upgrading: review of the state of art and future research directions. Prog Energy Combust Sci. 2019;71:1–80. https://doi.org/10.1016/j.pecs.2018.10.006.

    Article  Google Scholar 

  15. Mika LT, Cséfalvay E, Németh Á. Catalytic conversion of carbohydrates to initial platform chemicals: chemistry and sustainability. Chem Rev. 2018;118:505–613. https://doi.org/10.1021/acs.chemrev.7b00395.

    Article  CAS  PubMed  Google Scholar 

  16. Schutyser W, Renders T, Van den Bosch S, Koelewijn SF, Beckham GT, Sels BF. Chemicals from lignin: an interplay of lignocellulose fractionation, depolymerisation, and upgrading. Chem Soc Rev. 2018;47:852–908. https://doi.org/10.1039/C7CS00566K.

    Article  CAS  PubMed  Google Scholar 

  17. Jeong J-Y, Lee U-D, Chang W-S, Jeong S-H. Production of bio-oil rich in acetic acid and phenol from fast pyrolysis of palm residues using a fluidized bed reactor: influence of activated carbons. Bioresour Technol. 2016;219:357–64. https://doi.org/10.1016/j.biortech.2016.07.107.

    Article  CAS  PubMed  Google Scholar 

  18. Cordella M, Torri C, Adamiano A, Fabbri D, Barontini F, Cozzani V. Bio-oils from biomass slow pyrolysis: a chemical and toxicological screening. J Hazard Mater. 2012;231-232:26–35. https://doi.org/10.1016/j.jhazmat.2012.06.030.

    Article  CAS  PubMed  Google Scholar 

  19. Amen-Chen C, Pakdel H, Roy C. Production of monomeric phenols by thermochemical conversion of biomass: a review. Bioresour Technol. 2001;79:277–99. https://doi.org/10.1016/S0960-8524(00)00180-2.

    Article  CAS  PubMed  Google Scholar 

  20. Kim J-S. Production, separation and applications of phenolic-rich bio-oil – a review. Bioresour Technol. 2015;178:90–8. https://doi.org/10.1016/j.biortech.2014.08.121.

    Article  CAS  PubMed  Google Scholar 

  21. Naron DR, Collard FX, Tyhoda L, Görgens JF. Production of phenols from pyrolysis of sugarcane bagasse lignin: catalyst screening using thermogravimetric analysis – thermal desorption – gas chromatography – mass spectroscopy. J Anal Appl Pyrolysis. 2019;138:120–31. https://doi.org/10.1016/j.jaap.2018.12.015.

    Article  CAS  Google Scholar 

  22. Chen W, Fang Y, Li K, Chen Z, Xia M, Gong M, Chen Y, Yang H, Tu X, Chen H. Bamboo wastes catalytic pyrolysis with N-doped biochar catalyst for phenols products. Appl Energy. 2020;260:114242. https://doi.org/10.1016/j.apenergy.2019.114242.

    Article  CAS  Google Scholar 

  23. Fu D-q, Li X-h, Li W-y, Feng J. Catalytic upgrading of coal pyrolysis products over bio-char. Fuel Process Technol. 2018;176:240–8. https://doi.org/10.1016/j.fuproc.2018.04.001.

    Article  CAS  Google Scholar 

  24. Qian K, Kumar A, Zhang H, Bellmer D, Huhnke R. Recent advances in utilization of biochar. Renew Sustain Energy Rev. 2015;42:1055–64. https://doi.org/10.1016/j.rser.2014.10.074.

    Article  CAS  Google Scholar 

  25. Yang Z, Lei H, Zhang Y, Qian K, Villota E, Qian M, Yadavalli G, Sun H. Production of renewable alkyl-phenols from catalytic pyrolysis of Douglas fir sawdust over biomass-derived activated carbons. Appl Energy. 2018;220:426–36. https://doi.org/10.1016/j.apenergy.2018.03.107.

    Article  CAS  Google Scholar 

  26. Zou R, Qian M, Wang C, Mateo W, Wang Y, Dai L, Lin X, Zhao Y, Huo E, Wang L, Zhang X, Kong X, Ruan R, Lei H. Biochar: from by-products of agro-industrial lignocellulosic waste to tailored carbon-based catalysts for biomass thermochemical conversions. Chem Eng J. 2022;441:135972. https://doi.org/10.1016/j.cej.2022.135972.

    Article  CAS  Google Scholar 

  27. Wang S, Li H, Wu M. Advances in metal/biochar catalysts for biomass hydro-upgrading: a review. J Clean Prod. 2021;303:126825. https://doi.org/10.1016/j.jclepro.2021.126825.

    Article  CAS  Google Scholar 

  28. Low YW, Yee KF. A review on lignocellulosic biomass waste into biochar-derived catalyst: current conversion techniques, sustainable applications and challenges. Biomass Bioenergy. 2021;154:106245. https://doi.org/10.1016/j.biombioe.2021.106245.

    Article  CAS  Google Scholar 

  29. Chi NTL, Anto S, Ahamed TS, Kumar SS, Shanmugam S, Samuel MS, Mathimani T, Brindhadevi K, Pugazhendhi A. A review on biochar production techniques and biochar based catalyst for biofuel production from algae. Fuel. 2021;287:119411. https://doi.org/10.1016/j.fuel.2020.119411.

    Article  CAS  Google Scholar 

  30. Chen W, Li K, Xia M, Chen Y, Yang H, Chen Z, Chen X, Chen H. Influence of NH3 concentration on biomass nitrogen-enriched pyrolysis. Bioresour Technol. 2018;263:350–7. https://doi.org/10.1016/j.biortech.2018.05.025.

    Article  CAS  PubMed  Google Scholar 

  31. Hulicova-Jurcakova D, Kodama M, Shiraishi S, Hatori H, Zhu ZH, Lu GQ. Nitrogen-enriched nonporous carbon electrodes with extraordinary supercapacitance. Adv Funct Mater. 2009;19:1800–9. https://doi.org/10.1002/adfm.200801100.

    Article  CAS  Google Scholar 

  32. Laheaeaer A, Delpeux-Ouldriane S, Lust E, Beguin F. Ammonia treatment of activated carbon powders for supercapacitor electrode application. J Electrochem Soc. 2014;161:A568–75. https://doi.org/10.1149/2.051404jes.

    Article  CAS  Google Scholar 

  33. Luo W, Wang B, Heron CG, Allen MJ, Morre J, Maier CS, Stickle WF, Ji X. Pyrolysis of cellulose under ammonia leads to nitrogen-doped nanoporous carbon generated through methane formation. Nano Lett. 2014;14:2225–9. https://doi.org/10.1021/nl500859p.

    Article  CAS  PubMed  Google Scholar 

  34. Chen W, Yang H, Chen Y, Chen X, Fang Y, Chen H. Biomass pyrolysis for nitrogen-containing liquid chemicals and nitrogen-doped carbon materials. J Anal Appl Pyrolysis. 2016;120:186–93. https://doi.org/10.1016/j.jaap.2016.05.004.

    Article  CAS  Google Scholar 

  35. Kan T, Strezov V, Evans TJ. Lignocellulosic biomass pyrolysis: a review of product properties and effects of pyrolysis parameters. Renew Sustain Energy Rev. 2016;57:1126–40. https://doi.org/10.1016/j.rser.2015.12.185.

    Article  CAS  Google Scholar 

  36. Liu WJ, Li WW, Jiang H, Yu HQ. Fates of chemical elements in biomass during its pyrolysis. Chem Rev. 2017;117:6367–98. https://doi.org/10.1021/acs.chemrev.6b00647.

    Article  CAS  PubMed  Google Scholar 

  37. Deng J, Li M, Wang Y. Biomass-derived carbon: synthesis and applications in energy storage and conversion. Green Chem. 2016;18:4824–54. https://doi.org/10.1039/c6gc01172a.

    Article  CAS  Google Scholar 

  38. Li Z, Zhang L, Amirkhiz BS, Tan X, Xu Z, Wang H, Olsen BC, Holt CMB, Mitlin D. Carbonized chicken eggshell membranes with 3D architectures as high-performance electrode materials for supercapacitors. Adv Energy Mater. 2012;2:431–7. https://doi.org/10.1002/aenm.201100548.

    Article  CAS  Google Scholar 

  39. Bae YJ, Ryu C, Jeon J-K, Park J, Suh DJ, Suh Y-W, Chang D, Park Y-K. The characteristics of bio-oil produced from the pyrolysis of three marine macroalgae. Bioresour Technol. 2011;102:3512–20. https://doi.org/10.1016/j.biortech.2010.11.023.

    Article  CAS  PubMed  Google Scholar 

  40. Marcilla A, Leon M, Nuria Garcia A, Banon E, Martinez P. Upgrading of tannery wastes under fast and slow pyrolysis conditions. Ind Eng Chem Res. 2012;51:3246–55. https://doi.org/10.1021/ie201635w.

    Article  CAS  Google Scholar 

  41. Deng Y, Xie Y, Zou K, Ji X. Review on recent advances in nitrogen-doped carbons: preparations and applications in supercapacitors. J Mater Chem A. 2016;4:1144–73. https://doi.org/10.1039/C5TA08620E.

    Article  CAS  Google Scholar 

  42. Chen Y, Zhang X, Chen W, Yang H, Chen H. The structure evolution of biochar from biomass pyrolysis and its correlation with gas pollutant adsorption performance. Bioresour Technol. 2017;246:101–9. https://doi.org/10.1016/j.biortech.2017.08.138.

    Article  CAS  PubMed  Google Scholar 

  43. Kasera N, Hall S, Kolar P. Effect of surface modification by nitrogen-containing chemicals on morphology and surface characteristics of N-doped pine bark biochars. J Environ Chem Eng. 2021;9:105161. https://doi.org/10.1016/j.jece.2021.105161.

    Article  CAS  Google Scholar 

  44. Chen W, Yang H, Chen Y, Xia M, Yang Z, Wang X, Chen H. Algae pyrolytic poly-generation: influence of component difference and temperature on products characteristics. Energy. 2017;131:1–12. https://doi.org/10.1016/j.energy.2017.05.019.

    Article  CAS  Google Scholar 

  45. Chen W, Yang H, Chen Y, Xia M, Chen X, Chen H. Transformation of nitrogen and evolution of N-containing species during algae pyrolysis. Environ Sci Technol. 2017;51:6570–9. https://doi.org/10.1021/acs.est.7b00434.

    Article  CAS  PubMed  Google Scholar 

  46. Chen W, Chen Y, Yang H, Li K, Chen X, Chen H. Investigation on biomass nitrogen-enriched pyrolysis: influence of temperature. Bioresour Technol. 2018;249:247–53. https://doi.org/10.1016/j.biortech.2017.10.022.

    Article  CAS  PubMed  Google Scholar 

  47. Hu X, Sun X, Yoo SJ, Evanko B, Fan F, Cai S, Zheng C, Hu W, Stucky GD. Nitrogen-rich hierarchically porous carbon as a high-rate anode material with ultra-stable cyclability and high capacity for capacitive sodium-ion batteries. Nano Energy. 2019;56:828–39. https://doi.org/10.1016/j.nanoen.2018.11.081.

    Article  CAS  Google Scholar 

  48. Chen P, Wang L-K, Wang G, Gao M-R, Ge J, Yuan W-J, Shen Y-H, Xie A-J, Yu S-H. Nitrogen-doped nanoporous carbon nanosheets derived from plant biomass: an efficient catalyst for oxygen reduction reaction. Energy Environ Sci. 2014;7:4095–103. https://doi.org/10.1039/C4EE02531H.

    Article  CAS  Google Scholar 

  49. Matsagar BM, Yang R-X, Dutta S, Ok YS, Wu KCW. Recent progress in the development of biomass-derived nitrogen-doped porous carbon. J Mater Chem A. 2021;9:3703–28. https://doi.org/10.1039/D0TA09706C.

    Article  CAS  Google Scholar 

  50. Zhang B, Jiang Y, Balasubramanian R. Synthesis, formation mechanisms and applications of biomass-derived carbonaceous materials: a critical review. J Mater Chem A. 2021;9:24759–802. https://doi.org/10.1039/D1TA06874A.

    Article  CAS  Google Scholar 

  51. Jin C, Nai J, Sheng O, Yuan H, Zhang W, Tao X, Lou XW. Biomass-based materials for green lithium secondary batteries. Energy Environ Sci. 2021;14:1326–79. https://doi.org/10.1039/D0EE02848G.

    Article  CAS  Google Scholar 

  52. Wang J, Kaskel S. KOH activation of carbon-based materials for energy storage. J Mater Chem. 2012;22:23710–25. https://doi.org/10.1039/C2JM34066F.

    Article  CAS  Google Scholar 

  53. Lv Y, Zhang F, Dou Y, Zhai Y, Wang J, Liu H, Xia Y, Tu B, Zhao D. A comprehensive study on KOH activation of ordered mesoporous carbons and their supercapacitor application. J Mater Chem. 2012;22:93–9. https://doi.org/10.1039/C1JM12742J.

    Article  CAS  Google Scholar 

  54. Elmouwahidi A, Bailón-García E, Pérez-Cadenas AF, Maldonado-Hódar FJ, Carrasco-Marín F. Activated carbons from KOH and H3PO4-activation of olive residues and its application as supercapacitor electrodes. Electrochim Acta. 2017;229:219–28. https://doi.org/10.1016/j.electacta.2017.01.152.

    Article  CAS  Google Scholar 

  55. Huber GW, Iborra S, Corma A. Synthesis of transportation fuels from biomass: chemistry, catalysts, and engineering. Chem Rev. 2006;106:4044–98. https://doi.org/10.1021/cr068360d.

    Article  CAS  PubMed  Google Scholar 

  56. Chunlan L, Shaoping X, Yixiong G, Shuqin L, Changhou L. Effect of pre-carbonization of petroleum cokes on chemical activation process with KOH. Carbon. 2005;43:2295–301. https://doi.org/10.1016/j.carbon.2005.04.009.

    Article  CAS  Google Scholar 

  57. Qu W-H, Xu Y-Y, Lu A-H, Zhang X-Q, Li W-C. Converting biowaste corncob residue into high value added porous carbon for supercapacitor electrodes. Bioresour Technol. 2015;189:285–91. https://doi.org/10.1016/j.biortech.2015.04.005.

    Article  CAS  PubMed  Google Scholar 

  58. Chen W, Gong M, Li K, Xia M, Chen Z, Xiao H, Fang Y, Chen Y, Yang H, Chen H. Insight into KOH activation mechanism during biomass pyrolysis: chemical reactions between O-containing groups and KOH. Appl Energy. 2020;278:115730. https://doi.org/10.1016/j.apenergy.2020.115730.

    Article  CAS  Google Scholar 

  59. Zhang C, Song W, Ma Q, Xie L, Zhang X, Guo H. Enhancement of CO2 capture on biomass-based carbon from black locust by KOH activation and ammonia modification. Energy Fuels. 2016;30:4181–90. https://doi.org/10.1021/acs.energyfuels.5b02764.

    Article  CAS  Google Scholar 

  60. Li Y, Li Z, Xing B, Li H, Ma Z, Zhang W, Reubroycharoen P, Wang S. Green conversion of bamboo chips into high-performance phenol adsorbent and supercapacitor electrodes by simultaneous activation and nitrogen doping. J Anal Appl Pyrolysis. 2021;155:105072. https://doi.org/10.1016/j.jaap.2021.105072.

    Article  CAS  Google Scholar 

  61. Guo N, Li M, Wang Y, Sun X, Wang F, Yang R. N-doped hierarchical porous carbon prepared by simultaneous-activation of KOH and NH3 for high performance supercapacitors. RSC Adv. 2016;6:101372–9. https://doi.org/10.1039/C6RA22426A.

    Article  CAS  Google Scholar 

  62. Zhu Y, Chen M, Zhang Y, Zhao W, Wang C. A biomass-derived nitrogen-doped porous carbon for high-energy supercapacitor. Carbon. 2018;140:404–12. https://doi.org/10.1016/j.carbon.2018.09.009.

    Article  CAS  Google Scholar 

  63. Li K, Chen W, Yang H, Chen Y, Xia S, Xia M, Tu X, Chen H. Mechanism of biomass activation and ammonia modification for nitrogen-doped porous carbon materials. Bioresour Technol. 2019;280:260–8. https://doi.org/10.1016/j.biortech.2019.02.039.

    Article  CAS  PubMed  Google Scholar 

  64. Yang Z, Lei H, Qian K, Zhang Y, Villota E. Renewable bio-phenols from in situ and ex situ catalytic pyrolysis of Douglas fir pellet over biobased activated carbons. Sustain Energy Fuels. 2018;2:894–904. https://doi.org/10.1039/c7se00607a.

    Article  CAS  Google Scholar 

  65. Li W, Wang D, Zhu Y, Chen J, Lu Y, Li S, Zheng Y, Zheng Z. Efficient ex-situ catalytic upgrading of biomass pyrolysis vapors to produce methylfurans and phenol over bio-based activated carbon. Biomass Bioenergy. 2020;142:105794. https://doi.org/10.1016/j.biombioe.2020.105794.

    Article  CAS  Google Scholar 

  66. Su Y, Liu L, Xu D, Du H, Xie Y, Xiong Y, Zhang S. Syngas production at low temperature via the combination of hydrothermal pretreatment and activated carbon catalyst along with value-added utilization of tar and bio-char. Energy Convers Manag. 2020;205:112382. https://doi.org/10.1016/j.enconman.2019.112382.

    Article  CAS  Google Scholar 

  67. Bu Q, Lei H, Wang L, Wei Y, Zhu L, Zhang X, Liu Y, Yadavalli G, Tang J. Bio-based phenols and fuel production from catalytic microwave pyrolysis of lignin by activated carbons. Bioresour Technol. 2014;162:142–7. https://doi.org/10.1016/j.biortech.2014.03.103.

    Article  CAS  PubMed  Google Scholar 

  68. Wang C, Lei H, Zhao Y, Qian M, Kong X, Mateo W, Zou R, Ruan R. Integrated harvest of phenolic monomers and hydrogen through catalytic pyrolysis of biomass over nanocellulose derived biochar catalyst. Bioresour Technol. 2021;320:124352. https://doi.org/10.1016/j.biortech.2020.124352.

    Article  CAS  PubMed  Google Scholar 

  69. Ma S, Li H, Zhang G, Iqbal T, Li K, Lu Q. Catalytic fast pyrolysis of walnut shell for alkylphenols production with nitrogen-doped activated carbon catalyst. Front Environ Sci Eng. 2021;15:25. https://doi.org/10.1007/s11783-020-1317-y.

    Article  CAS  Google Scholar 

  70. Chen X, Che Q, Li S, Liu Z, Yang H, Chen Y, Wang X, Shao J, Chen H. Recent developments in lignocellulosic biomass catalytic fast pyrolysis: strategies for the optimization of bio-oil quality and yield. Fuel Process Technol. 2019;196:106180. https://doi.org/10.1016/j.fuproc.2019.106180.

    Article  CAS  Google Scholar 

  71. Li M, Xu F, Li H, Wang Y. Nitrogen-doped porous carbon materials: promising catalysts or catalyst supports for heterogeneous hydrogenation and oxidation. Cat Sci Technol. 2016;6:3670–93. https://doi.org/10.1039/C6CY00544F.

    Article  CAS  Google Scholar 

  72. Serp P, Machado B. Nanostructured carbon materials for catalysis. Royal Society of Chemistry; 2015.

    Book  Google Scholar 

  73. Guo D, Shibuya R, Akiba C, Saji S, Kondo T, Nakamura J. Active sites of nitrogen-doped carbon materials for oxygen reduction reaction clarified using model catalysts. Science. 2016;351:361–5. https://doi.org/10.1126/science.aad0832.

    Article  CAS  PubMed  Google Scholar 

  74. Yang H, Chen Z, Chen W, Chen Y, Wang X, Chen H. Role of porous structure and active O-containing groups of activated biochar catalyst during biomass catalytic pyrolysis. Energy. 2020;210:118646. https://doi.org/10.1016/j.energy.2020.118646.

    Article  CAS  Google Scholar 

  75. Cao B, Yuan J, Jiang D, Wang S, Barati B, Hu Y, Yuan C, Gong X, Wang Q. Seaweed-derived biochar with multiple active sites as a heterogeneous catalyst for converting macroalgae into acid-free biooil containing abundant ester and sugar substances. Fuel. 2021;285:119164. https://doi.org/10.1016/j.fuel.2020.119164.

    Article  CAS  Google Scholar 

  76. Krerkkaiwan S, Mueangta S, Thammarat P, Jaisat L, Kuchonthara P. Catalytic biomass-derived tar decomposition using char from the co-pyrolysis of coal and giant leucaena wood biomass. Energy Fuels. 2015;29:3119–26. https://doi.org/10.1021/ef502792x.

    Article  CAS  Google Scholar 

  77. Wang M, Jin L, Li Y, Lv J, Wei B, Hu H. In-situ catalytic upgrading of coal pyrolysis tar coupled with CO2 reforming of methane over Ni-based catalysts. Fuel Process Technol. 2018;177:119–28. https://doi.org/10.1016/j.fuproc.2018.04.022.

    Article  CAS  Google Scholar 

  78. Zhang Y, Lei H, Yang Z, Qian K, Villota E. Renewable high-purity mono-phenol production from catalytic microwave-induced pyrolysis of cellulose over biomass-derived activated carbon catalyst. ACS Sustain Chem Eng. 2018;6:5349–57. https://doi.org/10.1021/acssuschemeng.8b00129.

    Article  CAS  Google Scholar 

  79. Pena J, Villot A, Gerente C. Pyrolysis chars and physically activated carbons prepared from buckwheat husks for catalytic purification of syngas. Biomass Bioenergy. 2020;132:105435. https://doi.org/10.1016/j.biombioe.2019.105435.

    Article  CAS  Google Scholar 

  80. Fuentes-Cano D, Parrillo F, Ruoppolo G, Gómez-Barea A, Arena U. The influence of the char internal structure and composition on heterogeneous conversion of naphthalene. Fuel Process Technol. 2018;172:125–32. https://doi.org/10.1016/j.fuproc.2017.12.015.

    Article  CAS  Google Scholar 

  81. Ravenni G, Sárossy Z, Ahrenfeldt J, Henriksen UB. Activity of chars and activated carbons for removal and decomposition of tar model compounds – a review. Renew Sustain Energy Rev. 2018;94:1044–56. https://doi.org/10.1016/j.rser.2018.07.001.

    Article  CAS  Google Scholar 

  82. Shen Y. Chars as carbonaceous adsorbents/catalysts for tar elimination during biomass pyrolysis or gasification. Renew Sustain Energy Rev. 2015;43:281–95. https://doi.org/10.1016/j.rser.2014.11.061.

    Article  CAS  Google Scholar 

  83. Chen XY, Chen C, Zhang ZJ, Xie DH, Deng X, Liu JW. Nitrogen-doped porous carbon for supercapacitor with long-term electrochemical stability. J Power Sources. 2013;230:50–8. https://doi.org/10.1016/j.jpowsour.2012.12.054.

    Article  CAS  Google Scholar 

  84. Zhang Y, Lei H, Yang Z, Duan D, Villota E, Ruan R. From glucose-based carbohydrates to phenol-rich bio-oils integrated with syngas production via catalytic pyrolysis over an activated carbon catalyst. Green Chem. 2018;20:3346–58. https://doi.org/10.1039/C8GC00593A.

    Article  CAS  Google Scholar 

  85. Lu Q, Ye X-n, Zhang Z-b, Cui M-S, Guo H-q, Qi W, Dong C-q, Yang Y-p. Catalytic fast pyrolysis of bagasse using activated carbon catalyst to selectively produce 4-ethyl phenol. Energy Fuels. 2016;30:10618–26. https://doi.org/10.1021/acs.energyfuels.6b02628.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We express great appreciation of the financial support from the National Natural Science Foundation of China (52106243, 51876078, and 51861130362), National key R&D program of China (2019YFC1904003), Natural Science Foundation of Jiangsu Province (BK20221517), and China Postdoctoral Science Foundation (2018M640696 and 2019T120664).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haiping Yang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chen, W. et al. (2023). Preparation of Green N-Doped Biochar Materials with Biomass Pyrolysis and Their Application to Catalytic Systems. In: Fang, Z., Smith Jr, R.L., Xu, L. (eds) Production of N-containing Chemicals and Materials from Biomass. Biofuels and Biorefineries, vol 12. Springer, Singapore. https://doi.org/10.1007/978-981-99-4580-1_11

Download citation

Publish with us

Policies and ethics