Skip to main content

Preparation of N-Doped Carbon Materials from Lignocellulosic Biomass Residues and Their Application to Energy Storage and Conversion Devices

  • Chapter
  • First Online:
Production of N-containing Chemicals and Materials from Biomass

Abstract

The use of biomass in the energy scenario has generated great interest due to the variety of high value-added products that can be obtained from it. Among these products, carbon materials stand out since they have very interesting properties, highlighting the versatility that they offer by virtue of the modification of their surface chemistry through the incorporation of heteroatoms. The present chapter aims at covering the main aspects related to the synthesis of nitrogen-doped carbon materials from lignocellulosic biomass residues together with some representative examples of their use in energy-related applications. The focus has been paid to the most important synthetic routes for the preparation of biomass-derived nitrogen-doped carbon materials, by using a general classification to sort them into in situ and post-synthesis doping strategies. The applicability of such carbon materials is emphasized in: (1) electrocatalytic and catalytic applications, and (2) electrodes in supercapacitors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bajwa DS, Peterson T, Sharma N, Shojaeiarani J, Bajwa SG. A review of densified solid biomass for energy production. Renew Sustain Energy Rev. 2018;96:296–305. https://doi.org/10.1016/j.rser.2018.07.040.

    Article  Google Scholar 

  2. Tursi A. A review on biomass: importance, chemistry, classification, and conversion. Biofuel Res J. 2019;6:962–79. https://doi.org/10.18331/BRJ2019.6.2.3.

    Article  CAS  Google Scholar 

  3. Saxena RC, Adhikari DK, Goyal HB. Biomass-based energy fuel through biochemical routes: a review. Renew Sustain Energy Rev. 2009;13:167–78. https://doi.org/10.1016/j.rser.2007.07.011.

    Article  CAS  Google Scholar 

  4. Shafiee S, Topal E. When will fossil fuel reserves be diminished? Energy Policy. 2009;37:181–9. https://doi.org/10.1016/j.enpol.2008.08.016.

    Article  Google Scholar 

  5. Bentsen NS, Felby C. Biomass for energy in the European union - a review of bioenergy resource assessments. Biotechnol Biofuels. 2012;5:1–10. https://doi.org/10.1186/1754-6834-5-25.

    Article  Google Scholar 

  6. Hussain A, Arif SM, Aslam M. Emerging renewable and sustainable energy technologies: state of the art. Renew Sustain Energy Rev. 2017;71:12–28. https://doi.org/10.1016/j.rser.2016.12.033.

    Article  Google Scholar 

  7. Panwar NL, Kaushik SC, Kothari S. Role of renewable energy sources in environmental protection: a review. Renew Sustain Energy Rev. 2011;15:1513–24. https://doi.org/10.1016/j.rser.2010.11.037.

    Article  Google Scholar 

  8. Kemp R, Martens P. Sustainable development: how to manage something that is subjective and never can be achieved? Sustain Sci Pract Policy. 2007;3:5–14. https://doi.org/10.1080/15487733.2007.11907997.

    Article  Google Scholar 

  9. Nunes LJR, Causer TP, Ciolkosz D. Biomass for energy: a review on supply chain management models. Renew Sustain Energy Rev. 2020;120:109658. https://doi.org/10.1016/j.rser.2019.109658.

    Article  Google Scholar 

  10. Doherty WOS, Mousavioun P, Fellows CM. Value-adding to cellulosic ethanol: lignin polymers. Ind Crop Prod. 2011;33:259–76. https://doi.org/10.1016/j.indcrop.2010.10.022.

    Article  CAS  Google Scholar 

  11. Pasangulapati V, Ramachandriya KD, Kumar A, Wilkins MR, Jones CL, Huhnke RL. Effects of cellulose, hemicellulose and lignin on thermochemical conversion characteristics of the selected biomass. Bioresour Technol. 2012;114:663–9. https://doi.org/10.1016/j.biortech.2012.03.036.

    Article  CAS  PubMed  Google Scholar 

  12. Quesada-Plata F, Ruiz-Rosas R, Morallón E, Cazorla-Amorós D. Activated carbons prepared through H3PO4-assisted hydrothermal carbonisation from biomass wastes: porous texture and electrochemical performance. ChemPlusChem. 2016;81:1349–59. https://doi.org/10.1002/cplu.201600412.

    Article  CAS  PubMed  Google Scholar 

  13. Bonechi C, Consumi M, Donati A, Leone G, Magnani A, Tamasi G, Rossi C. Biomass: an overview. In: Dalena F, Basile A, Rossi C, editors. Bioenergy systems for the future prospects for biofuels and biohydrogen. Siena: Elsevier Ltd; 2017. p. 3–42. https://doi.org/10.1016/B978-0-08-101031-0.00001-6.

    Chapter  Google Scholar 

  14. Kumar R, Strezov V, Weldekidan H, He J, Singh S, Kan T, Dastjerdi B. Lignocellulose biomass pyrolysis for bio-oil production: a review of biomass pre-treatment methods for production of drop-in fuels. Renew Sustain Energy Rev. 2020;123:109763. https://doi.org/10.1016/j.rser.2020.109763.

    Article  CAS  Google Scholar 

  15. Ubando AT, Rivera DRT, Chen WH, Culaba AB. A comprehensive review of life cycle assessment (LCA) of microalgal and lignocellulosic bioenergy products from thermochemical processes. Bioresour Technol. 2019;291:121837. https://doi.org/10.1016/J.BIORTECH.2019.121837.

    Article  CAS  PubMed  Google Scholar 

  16. Caes BR, Teixeira RE, Knapp KG, Raines RT. Biomass to furanics: renewable routes to chemicals and fuels. ACS Sustain Chem Eng. 2015;3:2591–605. https://doi.org/10.1021/acssuschemeng.5b00473.

    Article  CAS  Google Scholar 

  17. Kircher M. Sustainability of biofuels and renewable chemicals production from biomass. Curr Opin Chem Biol. 2015;29:26–31. https://doi.org/10.1016/j.cbpa.2015.07.010.

    Article  CAS  PubMed  Google Scholar 

  18. Stafford W, De Lange W, Nahman A, Chunilall V, Lekha P, Andrew J, Johakimu J, Sithole B, Trotter D. Forestry biorefineries. Renew Energy. 2020;154:461–75. https://doi.org/10.1016/j.renene.2020.02.002.

    Article  CAS  Google Scholar 

  19. de Jong E, Higson A, Walsh P, Wellisch M. Task 42 biobased chemicals - value added products from biorefineries. A Rep Prep IEA Bioenergy-Task. 2011;42:1–33.

    Google Scholar 

  20. de Jong E, Jungmeier G. Chapter 1 - biorefinery concepts in comparison to petrochemical refineries. In: Pandey A, Höfer R, Taherzadeh M, Nampoothiri KM, Larroche C, editors. Industrial biorefineries & white biotechnology. Amsterdam: Elsevier Ltd; 2015. p. 3–33. https://doi.org/10.1016/B978-0-444-63453-5.00001-X.

    Chapter  Google Scholar 

  21. Lin R, Man Y, Lee CKM, Ji P, Ren J. Sustainability prioritization framework of biorefinery: a novel multi-criteria decision-making model under uncertainty based on an improved interval goal programming method. J Clean Prod. 2020;251:119729. https://doi.org/10.1016/j.jclepro.2019.119729.

    Article  CAS  Google Scholar 

  22. Dahiya S, Kumar AN, Shanthi Sravan J, Chatterjee S, Sarkar O, Mohan SV. Food waste biorefinery: sustainable strategy for circular bioeconomy. Bioresour Technol. 2018;248:2–12. https://doi.org/10.1016/j.biortech.2017.07.176.

    Article  CAS  PubMed  Google Scholar 

  23. Kamm B, Gruber PR, Kamm M. Biorefineries – industrial processes and products, Ullmann’s Encyclopedia of industrial chemistry. Ullmann’s Encycl Ind Chem. 2012:659–83. https://doi.org/10.1002/14356007.l04_l01.

  24. Deng J, Li M, Wang Y. Biomass-derived carbon: synthesis and applications in energy storage and conversion. Green Chem. 2016;18:4824–54. https://doi.org/10.1039/C6GC01172A.

    Article  CAS  Google Scholar 

  25. Liu WJ, Jiang H, Yu HQ. Development of biochar-based functional materials: toward a sustainable platform carbon material. Chem Rev. 2015;115:12251–85. https://doi.org/10.1021/acs.chemrev.5b00195.

    Article  CAS  PubMed  Google Scholar 

  26. Tan XF, Liu SB, Liu YG, Gu YL, Zeng GM, Hu XJ, Wang X, Liu SH, Jiang LH. Biochar as potential sustainable precursors for activated carbon production: multiple applications in environmental protection and energy storage. Bioresour Technol. 2017;227:359–72. https://doi.org/10.1016/j.biortech.2016.12.083.

    Article  CAS  PubMed  Google Scholar 

  27. Jain A, Ghosh M, Krajewski M, Kurungot S, Michalska M. Biomass-derived activated carbon material from native European deciduous trees as an inexpensive and sustainable energy material for supercapacitor application. J Energy Storage. 2021;34:102178. https://doi.org/10.1016/j.est.2020.102178.

    Article  Google Scholar 

  28. Reza MS, Yun CS, Afroze S, Radenahmad N, Bakar MSA, Saidur R, Taweekun J, Azad AK. Preparation of activated carbon from biomass and its’ applications in water and gas purification, a review. Arab J Basic Appl Sci. 2020;27:208–38. https://doi.org/10.1080/25765299.2020.1766799.

    Article  Google Scholar 

  29. Tang ZE, Lim S, Pang YL, Shuit SH, Ong HC. Utilisation of biomass wastes based activated carbon supported heterogeneous acid catalyst for biodiesel production. Renew Energy. 2020;158:91–102. https://doi.org/10.1016/j.renene.2020.05.119.

    Article  CAS  Google Scholar 

  30. Ogungbenro AE, Quang DV, Al-Ali KA, Vega LF, Abu-Zahra MRM. Synthesis and characterization of activated carbon from biomass date seeds for carbon dioxide adsorption. J Environ Chem Eng. 2020;8:104257. https://doi.org/10.1016/j.jece.2020.104257.

    Article  CAS  Google Scholar 

  31. Titirici MM, Antonietti M. Chemistry and materials options of sustainable carbon materials made by hydrothermal carbonization. Chem Soc Rev. 2010;39:103–16. https://doi.org/10.1039/b819318p.

    Article  CAS  PubMed  Google Scholar 

  32. Hu B, Zhu HZ, Yu SH. Hydrothermally synthesized carbonaceous nanocomposites. In: Titirici MM, editor. Sustainable carbon materials from hydrothermal processes. Germany: John Wiley & Sons, Ltd.; 2013. p. 101–24.

    Chapter  Google Scholar 

  33. Ipiales RP, de la Rubia MA, Diaz E, Mohedano AF, Rodriguez JJ. Integration of hydrothermal carbonization and anaerobic digestion for energy recovery of biomass waste: an overview. Energy Fuel. 2021;35:17032–50. https://doi.org/10.1021/acs.energyfuels.1c01681.

    Article  CAS  Google Scholar 

  34. Kumar M, Olajire Oyedun A, Kumar A. A review on the current status of various hydrothermal technologies on biomass feedstock. Renew Sustain Energy Rev. 2018;81:1742–70. https://doi.org/10.1016/j.rser.2017.05.270.

    Article  Google Scholar 

  35. Shen Y. A review on hydrothermal carbonization of biomass and plastic wastes to energy products. Biomass Bioenergy. 2020;134:105479. https://doi.org/10.1016/j.biombioe.2020.105479.

    Article  CAS  Google Scholar 

  36. Cao X, Ro KS, Libra JA, Kammann CI, Lima I, Berge N, Li A, Li Y, Chen N, Yang J, Deng B, Mao J. Effects of biomass types and carbonization conditions on the chemical characteristics of hydrochars. J Agric Food Chem. 2013;61:9401–11. https://doi.org/10.1021/jf402345k.

    Article  CAS  PubMed  Google Scholar 

  37. Hoekman SK, Broch A, Robbins C, Zielinska B, Felix L. Hydrothermal carbonization (HTC) of selected woody and herbaceous biomass feedstocks. Biomass Convers Biorefin. 2013;3:113–26. https://doi.org/10.1007/s13399-012-0066-y.

    Article  CAS  Google Scholar 

  38. Lu Y, Savage PE. Supercritical water gasification of lipid-extracted hydrochar to recover energy and nutrients. J Supercrit Fluids. 2015;99:88–94. https://doi.org/10.1016/j.supflu.2015.01.019.

    Article  CAS  Google Scholar 

  39. Rosas JM, Berenguer R, Valero-Romero MJ, Rodríguez-Mirasol J, Cordero T. Preparation of different carbon materials by thermochemical conversion of lignin. Front Mater. 2014;1:1–17. https://doi.org/10.3389/fmats.2014.00029.

    Article  Google Scholar 

  40. Marsh H, Rodríguez-Reinoso F. Chapter 5- activation processes (thermal or physical). In: Marsh H, Rodríguez-Reinoso F, editors. Activated carbon. Oxford: Elsevier Science Ltd; 2006. p. 243–321. https://doi.org/10.1016/B978-008044463-5/50019-4.

    Chapter  Google Scholar 

  41. Marsh H, Rodríguez-Reinoso F. Chapter 6- activation processes (chemical). In: Marsh H, Rodríguez-Reinoso F, editors. Activated carbon. Oxford: Elsevier Science Ltd; 2006. p. 322–65. https://doi.org/10.1016/B978-008044463-5/50020-0.

    Chapter  Google Scholar 

  42. Awasthi GP, Bhattarai DP, Maharjan B, Kim KS, Park CH, Kim CS. Synthesis and characterizations of activated carbon from wisteria sinensis seeds biomass for energy storage applications. J Ind Eng Chem. 2019;72:265–72. https://doi.org/10.1016/j.jiec.2018.12.027.

    Article  CAS  Google Scholar 

  43. González-García P. Activated carbon from lignocellulosics precursors: a review of the synthesis methods, characterization techniques and applications. Renew Sustain Energy Rev. 2018;82:1393–414. https://doi.org/10.1016/j.rser.2017.04.117.

    Article  CAS  Google Scholar 

  44. Sun G, Qiu L, Zhu M, Kang K, Guo X. Activated carbons prepared by hydrothermal pretreatment and chemical activation of Eucommia ulmoides wood for supercapacitors application. Ind Crop Prod. 2018;125:41–9. https://doi.org/10.1016/j.indcrop.2018.08.082.

    Article  CAS  Google Scholar 

  45. Fic K, Platek A, Piwek J, Frackowiak E. Sustainable materials for electrochemical capacitors. Mater Today. 2018;21:437–54. https://doi.org/10.1016/j.mattod.2018.03.005.

    Article  CAS  Google Scholar 

  46. Falco C, Marco-Lozar JP, Salinas-Torres D, Morallón E, Cazorla-Amorós D, Titirici MM, Lozano-Castelló D. Tailoring the porosity of chemically activated hydrothermal carbons: influence of the precursor and hydrothermal carbonization temperature. Carbon. 2013;62:346–55. https://doi.org/10.1016/j.carbon.2013.06.017.

    Article  CAS  Google Scholar 

  47. Sun W, Lipka SM, Swartz C, Williams D, Yang F. Hemp-derived activated carbons for supercapacitors. Carbon. 2016;103:181–92. https://doi.org/10.1016/j.carbon.2016.02.090.

    Article  CAS  Google Scholar 

  48. Redondo E, Carretero-González J, Goikolea E, Ségalini J, Mysyk R. Effect of pore texture on performance of activated carbon supercapacitor electrodes derived from olive pits. Electrochim Acta. 2015;160:178–84. https://doi.org/10.1016/j.electacta.2015.02.006.

    Article  CAS  Google Scholar 

  49. Cheng J, Hu SC, Sun GT, Kang K, Zhu MQ, Geng ZC. Comparison of activated carbons prepared by one-step and two-step chemical activation process based on cotton stalk for supercapacitors application. Energy. 2021;215:119144. https://doi.org/10.1016/j.energy.2020.119144.

    Article  CAS  Google Scholar 

  50. Vinayagam M, Suresh Babu R, Sivasamy A, Ferreira de Barros AL. Biomass-derived porous activated carbon from Syzygium cumini fruit shells and Chrysopogon zizanioides roots for high-energy density symmetric supercapacitors. Biomass Bioenergy. 2020;143:105838. https://doi.org/10.1016/j.biombioe.2020.105838.

    Article  CAS  Google Scholar 

  51. Yahya MA, Al-Qodah Z, Ngah CWZ. Agricultural bio-waste materials as potential sustainable precursors used for activated carbon production: a review. Renew Sustain Energy Rev. 2015;46:218–35. https://doi.org/10.1016/j.rser.2015.02.051.

    Article  CAS  Google Scholar 

  52. MacDermid-Watts K, Pradhan R, Dutta A. Catalytic hydrothermal carbonization treatment of biomass for enhanced activated carbon: a review. Waste Biomass Valorization. 2020;12:2171–86. https://doi.org/10.1007/s12649-020-01134-x.

    Article  CAS  Google Scholar 

  53. Rodríguez-Reinoso F, Molina-Sabio M, González MT. The use of steam and CO2 as activating agents in the preparation of activated carbons. Carbon. 1995;33:15–23. https://doi.org/10.1016/0008-6223(94)00100-E.

    Article  Google Scholar 

  54. Lillo-Ródenas MA, Lozano-Castelló D, Cazorla-Amorós D, Linares-Solano A. Preparation of activated carbons from Spanish anthracite – II. Activation by NaOH. Carbon. 2001;39:751–9. https://doi.org/10.1016/S0008-6223(00)00186-X.

    Article  Google Scholar 

  55. Sevilla M, Díez N, Fuertes AB. More sustainable chemical activation strategies for the production of porous carbons. ChemSusChem. 2021;14:94–117. https://doi.org/10.1002/cssc.202001838.

    Article  CAS  PubMed  Google Scholar 

  56. Linares-Solano A, Lozano-Castelló D, Lillo-Ródenas MA, Cazorla-Amorós D. Carbon activation by alkaline hydroxides preparation and reactions, porosity and performance. In: Radovic LR, editor. Chemistry and physics of carbon. 1st ed. Boca Raton: CRC Press; 2008. p. 1–62. https://doi.org/10.1201/9781420042993.

    Chapter  Google Scholar 

  57. Maciá-Agulló JA, Moore BC, Cazorla-Amorós D, Linares-Solano A. Activation of coal tar pitch carbon fibres: physical activation vs. chemical activation. Carbon. 2004;42:1367–70. https://doi.org/10.1016/j.carbon.2004.01.013.

    Article  CAS  Google Scholar 

  58. Jagtoyen M, Derbyshire F. Activated carbons from yellow poplar and white oak by H3PO4 activation. Carbon. 1998;36:1085–97. https://doi.org/10.1016/S0008-6223(98)00082-7.

    Article  CAS  Google Scholar 

  59. Srinivasakannan C, Abu Bakar ZM. Production of activated carbon from rubber wood sawdust. Biomass Bioenergy. 2004;27:89–96. https://doi.org/10.1016/j.biombioe.2003.11.002.

    Article  CAS  Google Scholar 

  60. Kumar A, Jena HM. Preparation and characterization of high surface area activated carbon from fox nut (Euryale ferox) shell by chemical activation with H3PO4. Results Phys. 2016;6:651–8. https://doi.org/10.1016/j.rinp.2016.09.012.

    Article  Google Scholar 

  61. Yorgun S, Yildiz D. Preparation and characterization of activated carbons from paulownia wood by chemical activation with H3PO4. J Taiwan Inst Chem Eng. 2015;53:122–31. https://doi.org/10.1016/j.jtice.2015.02.032.

    Article  CAS  Google Scholar 

  62. Wiśniewski M, Pacholczyk A, Terzyk AP, Rychlicki G. New phosphorus-containing spherical carbon adsorbents as promising materials in drug adsorption and release. J Colloid Interface Sci. 2011;354:891–4. https://doi.org/10.1016/j.jcis.2010.11.072.

    Article  CAS  PubMed  Google Scholar 

  63. Berenguer R, Ruiz-Rosas R, Gallardo A, Cazorla-Amorós D, Morallón E, Nishihara H, Kyotani T, Rodríguez-Mirasol J, Cordero T. Enhanced electro-oxidation resistance of carbon electrodes induced by phosphorus surface groups. Carbon. 2015;95:681–9. https://doi.org/10.1016/j.carbon.2015.08.101.

    Article  CAS  Google Scholar 

  64. Hulicova-Jurcakova D, Puziy AM, Poddubnaya OI, Suárez-García F, Tascón JMD, Lu GQ. Highly stable performance of Supercapacitors from phosphorus-enriched carbons. J Am Chem Soc. 2009;131:5026–7. https://doi.org/10.1021/ja809265m.

    Article  CAS  PubMed  Google Scholar 

  65. Pandolfo AG, Hollenkamp AF. Carbon properties and their role in supercapacitors. J Power Sources. 2006;157:11–27. https://doi.org/10.1016/j.jpowsour.2006.02.065.

    Article  CAS  Google Scholar 

  66. An Y, Yang Y, Hu Z, Guo B, Wang X, Yang X, Zhang Q, Wu H. High-performance symmetric supercapacitors based on carbon nanosheets framework with graphene hydrogel architecture derived from cellulose acetate. J Power Sources. 2017;337:45–53. https://doi.org/10.1016/j.jpowsour.2016.10.112.

    Article  CAS  Google Scholar 

  67. Zhao L, Baccile N, Gross S, Zhang Y, Wei W, Sun Y, Antonietti M, Titirici MM. Sustainable nitrogen-doped carbonaceous materials from biomass derivatives. Carbon. 2010;48:3778–87. https://doi.org/10.1016/j.carbon.2010.06.040.

    Article  CAS  Google Scholar 

  68. Enterría M, Figueiredo JL. Nanostructured mesoporous carbons: tunin texture and surface chemistry. Carbon. 2016;108:79–102. https://doi.org/10.1016/j.carbon.2016.06.108.

    Article  CAS  Google Scholar 

  69. Quílez-Bermejo J, Morallón E, Cazorla-Amorós D. Metal-free heteroatom-doped carbon-based catalysts for ORR. A critical assessment about the role of heteroatoms. Carbon. 2020;165:434–54. https://doi.org/10.1016/j.carbon.2020.04.068.

    Article  CAS  Google Scholar 

  70. Inagaki M, Konno H, Tanaike O. Carbon materials for electrochemical capacitors. J Power Sources. 2010;195:7880–903. https://doi.org/10.1016/j.jpowsour.2010.06.036.

    Article  CAS  Google Scholar 

  71. Salinas-Torres D, Navlani-García M, Mori K, Kuwahara Y, Yamashita H. Nitrogen-doped carbon materials as a promising platform toward the efficient catalysis for hydrogen generation. Appl Catal A Gen. 2019;571:25–41. https://doi.org/10.1016/J.APCATA.2018.11.034.

    Article  CAS  Google Scholar 

  72. Matsagar BM, Yang RX, Dutta S, Ok YS, Wu KC. Recent progress in the development of biomass-derived nitrogen-doped porous carbon. J Mater Chem A. 2021;9:3703–28. https://doi.org/10.1039/d0ta09706c.

    Article  CAS  Google Scholar 

  73. Kobina Sam D, Kobina Sam E, Lv X. Application of biomass-derived nitrogen-doped carbon aerogels in electrocatalysis and supercapacitors. ChemElectroChem. 2020;7:3695–712. https://doi.org/10.1002/celc.202000829.

    Article  CAS  Google Scholar 

  74. Deng Y, Xie Y, Zou K, Ji X. Review on recent advances in nitrogen-doped carbons: preparations and applications in supercapacitors. J Mater Chem A. 2015;4:1144–73. https://doi.org/10.1039/C5TA08620E.

    Article  CAS  Google Scholar 

  75. Inagaki M, Toyoda M, Soneda Y, Morishita T. Nitrogen-doped carbon materials. Carbon. 2018;132:104–40. https://doi.org/10.1016/j.carbon.2018.02.024.

    Article  CAS  Google Scholar 

  76. Yamada Y, Tanaka H, Kubo S, Sato S. Unveiling bonding states and roles of edges in nitrogen-doped graphene nanoribbon by X-ray photoelectron spectroscopy. Carbon. 2021;185:342–67. https://doi.org/10.1016/j.carbon.2021.08.085.

    Article  CAS  Google Scholar 

  77. Salinas-Torres D, Shiraishi S, Morallón E, Cazorla-Amorós D. Improvement of carbon materials performance by nitrogen functional groups in electrochemical capacitors in organic electrolyte at severe conditions. Carbon. 2015;82:205–13. https://doi.org/10.1016/j.carbon.2014.10.064.

    Article  CAS  Google Scholar 

  78. Kato T, Yamada Y, Nishikawa Y, Otomo T, Sato H, Sato S. Origins of peaks of graphitic and pyrrolic nitrogen in N1s X-ray photoelectron spectra of carbon materials: quaternary nitrogen, tertiary amine, or secondary amine? J Mater Sci. 2021;56:15798–811. https://doi.org/10.1007/s10853-021-06283-5.

    Article  CAS  Google Scholar 

  79. Chen Z, Jaworski A, Chen J, Budnyak TM, Szewczyk I, Rokicińska A, Dronskowski R, Hedin N, Kuśtrowski P, Slabon A. Graphitic nitrogen in carbon catalysts is important for the reduction of nitrite as revealed by naturally abundant 15N NMR spectroscopy. Dalt Trans. 2021;50:6857–66. https://doi.org/10.1039/d1dt00658d.

    Article  CAS  Google Scholar 

  80. Kuroki S, Hosaka Y, Yamauchi C. A solid-state NMR study of the carbonization of polyaniline. Carbon. 2013;55:160–7. https://doi.org/10.1016/j.carbon.2012.12.022.

    Article  CAS  Google Scholar 

  81. Niwa H, Horiba K, Harada Y, Oshima M, Ikeda T, Terakura K, Ozaki J-i, Miyata S. X-ray absorption analysis of nitrogen contribution to oxygen reduction reaction in carbon alloy cathode catalysts for polymer electrolyte fuel cells. J Power Sources. 2009;187:93–7. https://doi.org/10.1016/j.jpowsour.2008.10.064.

    Article  CAS  Google Scholar 

  82. Kiuchi H, Kondo T, Sakurai M, Guo D, Nakamura J, Niwa H, Miyawaki J, Kawai M, Oshima M, Harada Y. Characterization of nitrogen species incorporated into graphite using low energy nitrogen ion sputtering. Phys Chem Phys. 2016;18:458–65. https://doi.org/10.1039/c5cp02305j.

    Article  CAS  Google Scholar 

  83. González-Gaitán C, Ruiz-Rosas R, Morallón E, Cazorla-Amorós D. Electrochemical methods to functionalize carbon materials. In: Thakur VK, Thakur MK, editors. Chemical functionalization of carbon nanomaterials: chemistry and applications. Boca Raton: CRC Press; 2015. p. 231–62. https://doi.org/10.1201/b18724.

    Chapter  Google Scholar 

  84. Jeon IY, Noh HJ, Baek JB. Nitrogen-doped carbon nanomaterials: synthesis, characteristics and applications. Chem - An Asian J. 2020;15:2282–93. https://doi.org/10.1002/asia.201901318.

    Article  CAS  Google Scholar 

  85. Ćirić-Marjanović G, Pašti I, Mentus S. One-dimensional nitrogen-containingcarbon nanostructures. Prog Mater Sci. 2015;69:61–182. https://doi.org/10.1016/j.pmatsci.2014.08.002.

    Article  CAS  Google Scholar 

  86. Shen W, Fan W. Nitrogen-containing porous carbons: synthesis and application. J Mater Chem A. 2013;1:999–1013. https://doi.org/10.1039/C2TA00028H.

    Article  CAS  Google Scholar 

  87. Raymundo-Piñero E, Cazorla-Amorós D, Linares-Solano A. The role of different nitrogen functional groups on the removal of SO2 from flue gases by N-doped activated carbon powders and fibres. Carbon. 2003;41:1925–32. https://doi.org/10.1016/S0008-6223(03)00180-5.

    Article  CAS  Google Scholar 

  88. Liang HW, Zhuang X, Brüller S, Feng X, Müllen K. Hierarchically porous carbons with optimized nitrogen doping as highly active electrocatalysts for oxygen reduction. Nat Commun. 2014;5:4973. https://doi.org/10.1038/ncomms5973.

    Article  CAS  PubMed  Google Scholar 

  89. Ma X, Fang M, Liu B, Chen R, Shi R, Wu Q, Zeng Z, Li L. Urea-assisted synthesis of biomass-based hierarchical porous carbons for the light hydrocarbons adsorption and separation. Chem Eng J. 2022;428:130985. https://doi.org/10.1016/j.cej.2021.130985.

    Article  CAS  Google Scholar 

  90. Charoensook K, Huang CL, Tai HC, Lanjapalli VVK, Chiang LM, Hosseini S, Lin YT, Li YY. Preparation of porous nitrogen-doped activated carbon derived from rice straw for high-performance supercapacitor application. J Taiwan Inst Chem Eng. 2021;120:246–56. https://doi.org/10.1016/j.jtice.2021.02.021.

    Article  CAS  Google Scholar 

  91. Han X, Jiang H, Zhou Y, Hong W, Zhou Y, Gao P, Ding R, Liu E. A high performance nitrogen-doped porous activated carbon for supercapacitor derived from pueraria. J Alloys Compd. 2018;744:544–51. https://doi.org/10.1016/j.jallcom.2018.02.078.

    Article  CAS  Google Scholar 

  92. Zhang LS, Liang XQ, Song WG, Wu ZY. Identification of the nitrogen species on N-doped graphene layers and Pt/NG composite catalyst for direct methanol fuel cell. Phys Chem Phys. 2010;12:12055–9. https://doi.org/10.1039/c0cp00789g.

    Article  CAS  Google Scholar 

  93. Yang Z, Zhang G, Guo X, Xu Y. Designing a novel N-doped adsorbent with ultrahigh selectivity for CO2: waste biomass pyrolysis and two-step activation. Biomass Convers Biorefin. 2021;11:2843–54. https://doi.org/10.1007/s13399-020-00633-0.

    Article  CAS  Google Scholar 

  94. Navlani-García M, Salinas-Torres D, Vázquez-Álvarez FD, Cazorla-Amorós D. Formic acid dehydrogenation attained by Pd nanoparticles-based catalysts supported on MWCNT-C3N4 composites. Catal Today. 2021;397–399:428–35. https://doi.org/10.1016/j.cattod.2021.07.019.

    Article  CAS  Google Scholar 

  95. Plavniece A, Volperts A, Dobele G, Zhurinsh A, Kaare K, Kruusenberg I, Kaprans K, Knoks A, Kleperis J. Wood and black liquor-based N-doped activated carbon for energy application. Sustainability. 2021;13:9237. https://doi.org/10.3390/su13169237.

    Article  CAS  Google Scholar 

  96. Chaparro-Garnica J, Salinas-Torres D, Mostazo-López MJ, Morallón E, Cazorla-Amorós D. Biomass waste conversion into low-cost carbon-based materials for supercapacitors: a sustainable approach for the energy scenario. J Electroanal Chem. 2021;880:114899. https://doi.org/10.1016/j.jelechem.2020.114899.

    Article  CAS  Google Scholar 

  97. Chaparro-Garnica J, Navlani-García M, Salinas-Torres D, Morallón E, Cazorla-Amorós D. Highly stable N-doped carbon-supported Pd-based catalysts prepared from biomass waste for H2 production from formic acid. ACS Sustain Chem Eng. 2020;8:15030–43. https://doi.org/10.1021/acssuschemeng.0c05906.

    Article  CAS  Google Scholar 

  98. Quintero-Jaime AF, Cazorla-Amorós D, Morallón E. Effect of surface oxygen groups in the electrochemical modification of multi-walled carbon nanotubes by 4-amino phenyl phosphonic acid. Carbon. 2020;165:328–39. https://doi.org/10.1016/j.carbon.2020.04.062.

    Article  CAS  Google Scholar 

  99. Martínez-Sánchez B, Quílez-Bermejo J, San-Fabián E, Cazorla-Amorós D, Morallón E. On the mechanism of electrochemical functionalization of carbon nanotubes with different structures with aminophenylphosphonic acid isomers: an experimental and computational approach. J Mater Chem A. 2022;10:7271–90. https://doi.org/10.1039/D1TA10322A.

    Article  Google Scholar 

  100. Ramírez-Pérez AC, Quílez-Bermejo J, Sieben JM, Morallón E, Cazorla-Amorós D. Effect of nitrogen-functional groups on the ORR activity of activated carbon fiber-polypyrrole-based electrodes. Electrocatalysis. 2018;9:697–705. https://doi.org/10.1007/s12678-018-0478-y.

    Article  CAS  Google Scholar 

  101. Bleda-Martínez MJ, Morallón E, Cazorla-Amorós D. Polyaniline/porous carbon electrodes by chemical polymerisation: effect of carbon surface chemistry. Electrochim Acta. 2007;52:4962–8. https://doi.org/10.1016/j.electacta.2007.01.073.

    Article  CAS  Google Scholar 

  102. Du W, Wang X, Sun X, Zhan J, Zhang H, Zhao X. Nitrogen-doped hierarchical porous carbon using biomass-derived activated carbon/carbonized polyaniline composites for supercapacitor electrodes. J Electroanal Chem. 2018;827:213–20. https://doi.org/10.1016/j.jelechem.2018.09.031.

    Article  CAS  Google Scholar 

  103. Yu M, Han Y, Li Y, Li J, Wang L. Polypyrrole-anchored cattail biomass-derived carbon aerogels for high performance binder-free supercapacitors. Carbohydr Polym. 2018;199:555–62. https://doi.org/10.1016/j.carbpol.2018.04.058.

    Article  CAS  PubMed  Google Scholar 

  104. Ding Y, Li Y, Dai Y, Han X, Xing B, Zhu L, Qiu K, Wang S. A novel approach for preparing in-situ nitrogen doped carbon via pyrolysis of bean pulp for supercapacitors. Energy. 2021;216:119227. https://doi.org/10.1016/j.energy.2020.119227.

    Article  CAS  Google Scholar 

  105. Cao X, Li Z, Chen H, Zhang C, Zhang Y, Gu C, Xu X, Li Q. Synthesis of biomass porous carbon materials from bean sprouts for hydrogen evolution reaction electrocatalysis and supercapacitor electrode. Int J Hydrog Energy. 2021;46:18887–97. https://doi.org/10.1016/j.ijhydene.2021.03.038.

    Article  CAS  Google Scholar 

  106. Sekhon SS, Park JS. Biomass-derived N-doped porous carbon nanosheets for energy technologies. Chem Eng J. 2021;425:129017. https://doi.org/10.1016/j.cej.2021.129017.

    Article  CAS  Google Scholar 

  107. Li Q, Wu X, Zhao Y, Miao Z, Xing L, Zhou J, Zhao J, Zhuo S. Nitrogen-doped hierarchical porous carbon through one-step activation of bean curd for high-performance supercapacitor electrode. ChemElectroChem. 2018;5:1606–14. https://doi.org/10.1002/celc.201800230.

    Article  CAS  Google Scholar 

  108. Wei T, Wei X, Gao Y, Li H. Large scale production of biomass-derived nitrogen-doped porous carbon materials for supercapacitors. Electrochim Acta. 2015;169:186–94. https://doi.org/10.1016/j.electacta.2015.04.082.

    Article  CAS  Google Scholar 

  109. Gao Q, Xiang H, Ni L, Hou Y, He Y, Feng Z, Yang J, Hu W, Liu Z. Nitrogen self-doped activated carbons with narrow pore size distribution from bamboo shoot shells. Colloids Surf A Physicochem Eng Asp. 2021;629:127408. https://doi.org/10.1016/j.colsurfa.2021.127408.

    Article  CAS  Google Scholar 

  110. Luo W, Wang B, Heron CG, Allen MJ, Morre J, Maier CS, Stickle WF, Ji X. Pyrolysis of cellulose under ammonia leads to nitrogen-doped nanoporous carbon generated through methane formation. Nano Lett. 2014;14:2225–9. https://doi.org/10.1021/nl500859p.

    Article  CAS  PubMed  Google Scholar 

  111. Geng Z, Xiao Q, Lv H, Li B, Wu H, Lu Y, Zhang C. One-step synthesis of microporous carbon monoliths derived from biomass with high nitrogen doping content for highly selective CO2 capture. Sci Rep. 2016;6:30049. https://doi.org/10.1038/srep30049.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Tian W, Sun H, Duan X, Zhang H, Ren Y, Wang S. Biomass-derived functional porous carbons for adsorption and catalytic degradation of binary micropollutants in water. J Hazard Mater. 2020;389:121881. https://doi.org/10.1016/j.jhazmat.2019.121881.

    Article  CAS  PubMed  Google Scholar 

  113. Xu H, Zhang Y, Wang L, Chen Y, Gao S. Hierarchical porous biomass-derived carbon framework with ultrahigh surface area for outstanding capacitance supercapacitor. Renew Energy. 2021;179:1826–35. https://doi.org/10.1016/j.renene.2021.08.008.

    Article  CAS  Google Scholar 

  114. Trogadas P, Coppens MO. Nature-inspired electrocatalysts and devices for energy conversion. Chem Soc Rev. 2020;49:3107–41. https://doi.org/10.1039/c8cs00797g.

    Article  CAS  PubMed  Google Scholar 

  115. Ghosh S, Basu RN. Multifunctional nanostructured electrocatalysts for energy conversion and storage: current status and perspectives. Nanoscale. 2018;10:11241–80. https://doi.org/10.1039/c8nr01032c.

    Article  CAS  PubMed  Google Scholar 

  116. Gao S, Geng K, Liu H, Wei X, Zhang M, Wang P, Wang J. Transforming organic-rich amaranthus waste into nitrogen-doped carbon with superior performance of the oxygen reduction reaction. Energy Environ Sci. 2015;8:221–9. https://doi.org/10.1039/c4ee02087a.

    Article  CAS  Google Scholar 

  117. Liu X, Zhou Y, Zhou W, Li L, Huang S, Chen S. Biomass-derived nitrogen self-doped porous carbon as effective metal-free catalysts for oxygen reduction reaction. Nanoscale. 2015;7:6136–42. https://doi.org/10.1039/c5nr00013k.

    Article  CAS  PubMed  Google Scholar 

  118. Chen P, Wang LK, Wang G, Gao MR, Ge J, Yuan WJ, Shen YH, Xie AJ, Yu SH. Nitrogen-doped nanoporous carbon nanosheets derived from plant biomass: an efficient catalyst for oxygen reduction reaction. Energy Environ Sci. 2014;7:4095–103. https://doi.org/10.1039/c4ee02531h.

    Article  CAS  Google Scholar 

  119. Quílez-Bermejo J, Strutyński K, Melle-Franco M, Morallón E, Cazorla-Amorós D. On the origin of the effect of pH in oxygen reduction reaction for nondoped and edge-type quaternary N-doped metal-free carbon-based catalysts. ACS Appl Mater Interfaces. 2020;12:54815–23. https://doi.org/10.1021/acsami.0c17249.

    Article  CAS  PubMed  Google Scholar 

  120. Müller-Hülstede J, Schonvogel D, Schmies H, Wagner P, Dyck A, Wark M. Incorporation of activated biomasses in Fe-N-C catalysts for oxygen reduction reaction with enhanced stability in acidic media. ACS Appl Energy Mater. 2021;4:6912–22. https://doi.org/10.1021/acsaem.1c01018.

    Article  CAS  Google Scholar 

  121. Li D, Han Z, Leng K, Ma S, Wang Y, Bai J. Biomass wood-derived efficient Fe–N–C catalysts for oxygen reduction reaction. J Mater Sci. 2021;56:12764–74. https://doi.org/10.1007/s10853-021-06122-7.

    Article  CAS  Google Scholar 

  122. He G, Yan G, Song Y, Wang L. Biomass juncus derived nitrogen-doped porous carbon materials for supercapacitor and oxygen reduction reaction. Front Chem. 2020;8:1–10. https://doi.org/10.3389/fchem.2020.00226.

    Article  CAS  Google Scholar 

  123. Lu G, Li Z, Fan W, Wang M, Yang S, Li J, Chang Z, Sun H, Liang S, Liu Z. Sponge-like N-doped carbon materials with co-based nanoparticles derived from biomass as highly efficient electrocatalysts for the oxygen reduction reaction in alkaline media. RSC Adv. 2019;9:4843–8. https://doi.org/10.1039/c8ra10462j.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Huang H, Wei X, Gao S. Nitrogen-doped porous carbon derived from Malachium aquaticum biomass as a highly efficient electrocatalyst for oxygen reduction reaction. Electrochim Acta. 2016;220:427–35. https://doi.org/10.1016/j.electacta.2016.10.108.

    Article  CAS  Google Scholar 

  125. He D, Zhao W, Li P, Liu Z, Wu H, Liu L, Han K, Liu L, Wan Q, Butt FK, Qu X. Bifunctional biomass-derived 3D nitrogen-doped porous carbon for oxygen reduction reaction and solid-state supercapacitor. Appl Surf Sci. 2019;465:303–12. https://doi.org/10.1016/j.apsusc.2018.09.185.

    Article  CAS  Google Scholar 

  126. Luo X, Liu Z, Ma Y, Nan Y, Gu Y, Li S, Zhou Q, Mo J. Biomass derived Fe, N-doped carbon material as bifunctional electrocatalysts for rechargeable Zn-air batteries. J Alloys Compd. 2021;888:161464. https://doi.org/10.1016/j.jallcom.2021.161464.

    Article  CAS  Google Scholar 

  127. Ma LL, Hu X, Liu WJ, Li HC, Lam PKS, Zeng RJ, Yu HQ. Constructing N, P-dually doped biochar materials from biomass wastes for high-performance bifunctional oxygen electrocatalysts. Chemosphere. 2021;278:130508. https://doi.org/10.1016/j.chemosphere.2021.130508.

    Article  CAS  PubMed  Google Scholar 

  128. Ye YY, Qian TT, Jiang H. Co-loaded N-doped biochar as a high-performance oxygen reduction reaction electrocatalyst by combined pyrolysis of biomass. Ind Eng Chem Res. 2020;59:15614–23. https://doi.org/10.1021/acs.iecr.0c03104.

    Article  CAS  Google Scholar 

  129. Xia S, Guo W, Cai N, Sun L, Zhou H, Lu W, Chen X, Zhang J, Chen Y, Yang H, Sun F, Wang D, Wang X, Wang S, Chen H. Synthesis and application in oxygen reduction reaction of N-doping porous graphitic carbon from biomass waste. Fuel Process Technol. 2021;224:107028. https://doi.org/10.1016/j.fuproc.2021.107028.

    Article  CAS  Google Scholar 

  130. Plavniece A, Volperts A, Dobele G, Zhurinsh A, Kaare K, Kruusenberg I, Kaprans K, Knoks A, Kleperis J. Wood and black liquor-based N-doped activated carbon for energy application. Sustain For. 2021;13:9237. https://doi.org/10.3390/su13169237.

    Article  CAS  Google Scholar 

  131. Gao X, Li X, Kong Z, Xiao G, Zhu Y. Bifunctional 3D n-doped porous carbon materials derived from paper towel for oxygen reduction reaction and supercapacitor. Sci Bull. 2018;63:621–8. https://doi.org/10.1016/j.scib.2018.04.016.

    Article  CAS  Google Scholar 

  132. Liu Z, Li Z, Tian S, Wang M, Sun H, Liang S, Chang Z, Lu G. Conversion of peanut biomass into electrocatalysts with vitamin B12 for oxygen reduction reaction in Zn-air battery. Int J Hydrog Energy. 2019;44:11788–96. https://doi.org/10.1016/j.ijhydene.2019.03.055.

    Article  CAS  Google Scholar 

  133. Borghei M, Laocharoen N, Kibena-Põldsepp E, Johansson LS, Campbell J, Kauppinen E, Tammeveski K, Rojas OJ. Porous N,P-doped carbon from coconut shells with high electrocatalytic activity for oxygen reduction: alternative to Pt-C for alkaline fuel cells. Appl Catal B Environ. 2017;204:394–402. https://doi.org/10.1016/j.apcatb.2016.11.029.

    Article  CAS  Google Scholar 

  134. Zhong G, Meng Z, Xu M, Xie H, Xu S, Fu X, Liao W, Zheng S, Xu Y. Self-nitrogen-doped porous carbon prepared via pyrolysis of grass-blade without additive for oxygen reduction reaction. Diam Relat Mater. 2022;121:108742. https://doi.org/10.1016/j.diamond.2021.108742.

    Article  CAS  Google Scholar 

  135. Kaare K, Yu E, Käämbre T, Volperts A, Dobele G, Zhurinsh A, Niaura G, TamasauskaiteTamasiunaite L, Norkus E, Kruusenberg I. Biomass-derived graphene-like catalyst material for oxygen reduction reaction. ChemNanoMat. 2021;7:307–13. https://doi.org/10.1002/cnma.202000615.

    Article  CAS  Google Scholar 

  136. Li Z, Gao C, Zhao H, Meng A, Ding S, Wang X, Li S. Porous biomass-derived carbon modified by cu, N co-doping and cu nanoparticles as high-efficient electrocatalyst for oxygen reduction reaction and zinc-air battery. J Alloys Compd. 2022;897:163175. https://doi.org/10.1016/j.jallcom.2021.163175.

    Article  CAS  Google Scholar 

  137. Kuo HC, Liu SH, Lin YG, Chiang CL, Tsang DCW. Synthesis of FeCo-N@N-doped carbon oxygen reduction catalysts: via microwave-assisted ammoxidation. Cat Sci Technol. 2020;10:3949–58. https://doi.org/10.1039/d0cy00376j.

    Article  CAS  Google Scholar 

  138. Morales-Salas L, Salazar MR, Escobar B. Doped biochar from an invasive plant “Eichhornia crassipes” for the oxygen reduction reaction. Int J Hydrog Energy. 2022;47:30140–6. https://doi.org/10.1016/j.ijhydene.2022.06.223.

    Article  CAS  Google Scholar 

  139. Hou J, Wen S, Chen J, Zhao Q, Wang L. Large-scale fabrication of biomass-derived N, S co-doped porous carbon with ultrahigh surface area for oxygen reduction. Mater Chem Phys. 2021;267:124601. https://doi.org/10.1016/j.matchemphys.2021.124601.

    Article  CAS  Google Scholar 

  140. Liu F, Peng H, Qiao X, Fu Z, Huang P, Liao S. High-performance doped carbon electrocatalyst derived from soybean biomass and promoted by zinc chloride. Int J Hydrog Energy. 2014;39:10128–34. https://doi.org/10.1016/j.ijhydene.2014.04.176.

    Article  CAS  Google Scholar 

  141. Zhou H, Zhang J, Amiinu IS, Zhang C, Liu X, Tu W, Pan M, Mu S. Transforming waste biomass with an intrinsically porous network structure into porous nitrogen-doped graphene for highly efficient oxygen reduction. Phys Chem Chem Phys. 2016;18:10392–9. https://doi.org/10.1039/c6cp00174b.

    Article  CAS  PubMed  Google Scholar 

  142. Zhao L. Natural phosphorus-doped honeycomb carbon materials as oxygen reduction catalysts derived from Pulsatilla chinensis (Bunge) regel. RSC Adv. 2017;7:13904–10. https://doi.org/10.1039/c6ra28630e.

    Article  CAS  Google Scholar 

  143. Charles V, Zhang X, Yuan M, Zhang K, Cui K, Zhang J, Zhao T, Li Y, Liu Z, Li B, Zhang G. CoNi nano-alloy anchored on biomass-derived N-doped carbon frameworks for enhanced oxygen reduction and evolution reactions. Electrochim Acta. 2022;402:139555. https://doi.org/10.1016/j.electacta.2021.139555.

    Article  CAS  Google Scholar 

  144. Liu A, Ma M, Zhang X, Ming J, Jiang L, Li Y, Zhang Y, Liu S. A biomass derived nitrogen doped carbon fibers as efficient catalysts for the oxygen reduction reaction. J Electroanal Chem. 2018;824:60–6. https://doi.org/10.1016/j.jelechem.2018.07.039.

    Article  CAS  Google Scholar 

  145. Zhao Y, Liu X, Liu Y, Chen Y, Gao S. Favorable pore size distribution of biomass-derived N, S dual-doped carbon materials for advanced oxygen reduction reaction. Int J Hydrog Energy. 2022;47:12964–74. https://doi.org/10.1016/j.ijhydene.2022.02.064.

    Article  CAS  Google Scholar 

  146. Li Q, Chen X, Yang Y. Biomass-derived nitrogen-doped porous carbon for highly efficient ambient electro-synthesis of NH3. Catalysts. 2020;10:353. https://doi.org/10.3390/catal10030353.

    Article  CAS  Google Scholar 

  147. Chaparro-Garnica JA, Navlani-García M, Salinas-Torres D, Morallón E, Cazorla-Amorós D. H2 production from formic acid using highly stable carbon-supported pd-based catalysts derived from soft-biomass residues: effect of heat treatment and functionalization of the carbon support. Materials. 2021;14:6506. https://doi.org/10.3390/ma14216506.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Chaparro-Garnica J, Navlani-García M, Salinas-Torres D, Berenguer-Murcia Á, Morallón E, Cazorla-Amorós D. Efficient production of hydrogen from a valuable CO2-derived molecule: formic acid dehydrogenation boosted by biomass waste-derived catalysts. Fuel. 2022;320:123900. https://doi.org/10.1016/j.fuel.2022.123900.

    Article  CAS  Google Scholar 

  149. Duan J, Xiang Z, Zhang H, Zhang B, Xiang X. Pd-Co2P nanoparticles supported on N-doped biomass-based carbon microsheet with excellent catalytic performance for hydrogen evolution from formic acid. Appl Surf Sci. 2020;530:147191. https://doi.org/10.1016/j.apsusc.2020.147191.

    Article  CAS  Google Scholar 

  150. Zou L, Liu Q, Zhu D, Huang Y, Mao Y, Luo X, Liang Z. Experimental and theoretical studies of ultrafine Pd-based biochar catalyst for dehydrogenation of formic acid and application of in situ hydrogenation. ACS Appl Mater Interfaces. 2022;14:17282–95. https://doi.org/10.1021/acsami.2c00343.

    Article  CAS  PubMed  Google Scholar 

  151. Lee DW, Jin MH, Oh D, Lee SW, Park JS. Straightforward synthesis of hierarchically porous nitrogen-doped carbon via pyrolysis of chitosan/urea/KOH mixtures and its application as a support for formic acid dehydrogenation catalysts. ACS Sustain Chem Eng. 2017;5:9935–44. https://doi.org/10.1021/acssuschemeng.7b01888.

    Article  CAS  Google Scholar 

  152. Shi Y, Xiang Z, Deng J, Nan J, Zhang B. Synthesis Pd/biomass-based carbon microsheet composite for efficient dehydrogenation from formic acid. Mater Lett. 2019;237:61–4. https://doi.org/10.1016/j.matlet.2018.11.074.

    Article  CAS  Google Scholar 

  153. Cao T, Cheng J, Ma J, Yang C, Yao M, Liu F, Deng M, Wang X, Ren Y. Facile synthesis of microporous carbons from biomass waste as high performance supports for dehydrogenation of formic acid. Nanomater. 2021;11:3028. https://doi.org/10.3390/nano11113028.

    Article  CAS  Google Scholar 

  154. Liu J, Deng Y, Li X, Wang L. Promising nitrogen-rich porous carbons derived from one-step calcium chloride activation of biomass-based waste for high performance supercapacitors. ACS Sustain Chem Eng. 2016;4:177–87. https://doi.org/10.1021/acssuschemeng.5b00926.

    Article  CAS  Google Scholar 

  155. Yue X, Yang H, Cao Y, Jiang L, Li H, Shi F, Liu J. Nitrogen-doped cornstalk-based biomass porous carbon with uniform hierarchical pores for high-performance symmetric supercapacitors. J Mater Sci. 2022;57:3645–61. https://doi.org/10.1007/s10853-022-06891-9.

    Article  CAS  Google Scholar 

  156. Yuan Y, Sun Y, Feng Z, Li X, Yi R, Sun W, Zhao C, Yang L. Nitrogen-doped hierarchical porous activated carbon derived from paddy for high-performance supercapacitors. Materials. 2021;14:1–12. https://doi.org/10.3390/ma14020318.

    Article  CAS  Google Scholar 

  157. Guo N, Li M, Wang Y, Sun X, Wang F, Yang R. N-doped hierarchical porous carbon prepared by simultaneous-activation of KOH and NH3 for high performance supercapacitors. RSC Adv. 2016;6:101372–9. https://doi.org/10.1039/c6ra22426a.

    Article  CAS  Google Scholar 

  158. Mostazo-López MJ, Ruiz-Rosas R, Morallón E, Cazorla-Amorós D. Generation of nitrogen functionalities on activated carbons by amidation reactions and Hofmann rearrangement: chemical and electrochemical characterization. Carbon. 2015;91:252–65. https://doi.org/10.1016/j.carbon.2015.04.089.

    Article  CAS  Google Scholar 

  159. Wang B, Wang Y, Peng Y, Wang X, Wang J, Zhao J. 3-dimensional interconnected framework of N-doped porous carbon based on sugarcane bagasse for application in supercapacitors and lithium ion batteries. J Power Sources. 2018;390:186–96. https://doi.org/10.1016/j.jpowsour.2018.04.056.

    Article  CAS  Google Scholar 

  160. Sun J, Li W, Lei E, Xu Z, Ma C, Wu Z, Liu S. Ultralight carbon aerogel with tubular structures and N-containing sandwich-like wall from kapok fibers for supercapacitor electrode materials. J Power Sources. 2019;438:227030. https://doi.org/10.1016/j.jpowsour.2019.227030.

    Article  CAS  Google Scholar 

  161. Xu D, Su Y, Zhang S, Xiong Y. Highly porous N-doped carbons production from biomass for high-performance supercapacitors without chemical nitrogen-containing dopants. Energy Sources, Part A Recover Util Environ Eff. 2020;42:1797–807. https://doi.org/10.1080/15567036.2019.1604890.

    Article  CAS  Google Scholar 

  162. Chen H, Yu F, Wang G, Chen L, Dai B, Peng S. Nitrogen and sulfur self-doped activated carbon directly derived from elm flower for high-performance supercapacitors. ACS Omega. 2018;3:4724–32. https://doi.org/10.1021/acsomega.8b00210.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Ma G, Zhang Z, Sun K, Peng H, Yang Q, Ran F, Lei Z. White clover based nitrogen-doped porous carbon for a high energy density supercapacitor electrode. RSC Adv. 2015;5:107707–15. https://doi.org/10.1039/c5ra20327a.

    Article  CAS  Google Scholar 

  164. He J, Zhang D, Han M, Liu X, Wang Y, Li Y, Zhang X, Wang K, Feng H, Wang Y. One-step large-scale fabrication of nitrogen doped microporous carbon by self-activation of biomass for supercapacitors application. J Energy Storage. 2019;21:94–104. https://doi.org/10.1016/j.est.2018.11.015.

    Article  Google Scholar 

  165. Yu D, Chen C, Zhao G, Sun L, Du B, Zhang H, Li Z, Sun Y, Besenbacher F, Yu M. Biowaste-derived hierarchical porous carbon nanosheets for ultrahigh power density supercapacitors. ChemSusChem. 2018;11:1678–85. https://doi.org/10.1002/cssc.201800202.

    Article  CAS  PubMed  Google Scholar 

  166. Yu J, Wang X, Peng J, Jia X, Li L, Chuan X. Porous activity of biomass-activated carbon enhanced by nitrogen-dopant towards high-performance lithium ion hybrid battery-supercapacitor. J Electrochem Soc. 2021;168:120537. https://doi.org/10.1149/1945-7111/ac42a1.

    Article  CAS  Google Scholar 

  167. Yu S, Zhu X, Lou G, Wu Y, Xu K, Zhang Y, Zhang L, Zhu E, Chen H, Shen Z, Bao B, Fu S. Sustainable hierarchical porous biomass carbons enriched with pyridinic and pyrrolic nitrogen for asymmetric supercapacitor. Mater Des. 2018;149:184–93. https://doi.org/10.1016/j.matdes.2018.04.023.

    Article  CAS  Google Scholar 

  168. Christina Mary AJ, Sathish CI, Murphin Kumar PS, Vinu A, Bose AC. Fabrication of hybrid supercapacitor device based on NiCo2O4@ZnCo2O4 and the biomass-derived N-doped activated carbon with a honeycomb structure. Electrochim Acta. 2020;342:136062. https://doi.org/10.1016/j.electacta.2020.136062.

    Article  CAS  Google Scholar 

  169. Gandla D, Wu X, Zhang F, Wu C, Tan DQ. High-performance and high-voltage supercapacitors based on N-doped mesoporous activated carbon derived from dragon fruit peels. ACS Omega. 2021;6:7615–25. https://doi.org/10.1021/acsomega.0c06171.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Guan L, Pan L, Peng T, Gao C, Zhao W, Yang Z, Hu H, Wu M. Synthesis of biomass-derived nitrogen-doped porous carbon nanosheests for high-performance supercapacitors. ACS Sustain Chem Eng. 2019;7:8405–12. https://doi.org/10.1021/acssuschemeng.9b00050.

    Article  CAS  Google Scholar 

  171. Ahmed S, Rafat M, Ahmed A. Nitrogen doped activated carbon derived from orange peel for supercapacitor application. Adv Nat Sci Nanosci Nanotechnol. 2018;9:035008. https://doi.org/10.1088/2043-6254/aad5d4.

    Article  CAS  Google Scholar 

  172. Sahoo MK, Rao GR. A high energy flexible symmetric supercapacitor fabricated using N-doped activated carbon derived from palm flowers. Nanoscale Adv. 2021;3:5417–29. https://doi.org/10.1039/d1na00261a.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Shang Z, An X, Zhang H, Shen M, Baker F, Liu Y, Liu L, Yang J, Cao H, Xu Q, Liu H, Ni Y. Houttuynia-derived nitrogen-doped hierarchically porous carbon for high-performance supercapacitor. Carbon. 2020;161:62–70. https://doi.org/10.1016/j.carbon.2020.01.020.

    Article  CAS  Google Scholar 

  174. Wang X, Zeng X, Cao D. Biomass-derived nitrogen-doped porous carbons (NPC) and NPC/polyaniline composites as high performance supercapacitor materials. Eng Sci. 2018;1:55–63. https://doi.org/10.30919/es.180325.

    Article  Google Scholar 

  175. Ji H, Zhang C, Rao W, Guo B, Fan L, Bai Z, Bao H, Xu J. Eco-friendly Polypyrrole-coated cocozelle composites for supercapacitor application. Fibers Polym. 2020;21:1300–7. https://doi.org/10.1007/s12221-020-9375-0.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank RTI2018-095291-B-I00, PID2019-105923RB-I00 and PID2021-123079OB-I00 projects funded by MCIN/AEI/10.13039/501100011033 and “ERDF A way of making Europe”. MNG gratefully acknowledges the Plan GenT project (CDEIGENT/2018/027).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diego Cazorla-Amorós .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chaparro-Garnica, J., Salinas-Torres, D., Navlani-García, M., Morallón, E., Cazorla-Amorós, D. (2023). Preparation of N-Doped Carbon Materials from Lignocellulosic Biomass Residues and Their Application to Energy Storage and Conversion Devices. In: Fang, Z., Smith Jr, R.L., Xu, L. (eds) Production of N-containing Chemicals and Materials from Biomass. Biofuels and Biorefineries, vol 12. Springer, Singapore. https://doi.org/10.1007/978-981-99-4580-1_10

Download citation

Publish with us

Policies and ethics