Skip to main content

Hydrolysis of Nitrile Compounds in Near-Critical Water

  • Chapter
  • First Online:
Production of N-containing Chemicals and Materials from Biomass

Part of the book series: Biofuels and Biorefineries ((BIOBIO,volume 12))

  • 206 Accesses

Abstract

With its unique properties, near-critical water (NCW) is expected to effectively replace traditional solvents and catalysts and to lead in the development of pollution-free, selective, efficient, and fast environment-friendly chemical processes. Nitrile compounds are a commercially vital class of reactive intermediates and solvents, finding applications in petrochemical, polymers and plastics, pharmaceutical, and pesticides industries. In the synthesis of nitrile compounds, nitrile byproducts are inevitably transferred into aqueous waste streams, which increases their potential for environmental impact. Hence, it is very important to understand the hydrolysis path and mechanism of nitrile compounds in NCW for efficient and clean chemical production. This chapter reviews progress in the hydrolysis of nitrile compounds in NCW and discusses their hydrolysis path, kinetics, mechanisms, and compares the reactivity of functional groups on their hydrolysis rate.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Poliakoff M, Fitzpatrick JM, Farren TR, Anastas PT. Green chemistry: science and politics of change. Science. 2002;297:807–10. https://doi.org/10.1126/science.297.5582.807.

    Article  CAS  PubMed  Google Scholar 

  2. Collins T. Toward sustainable chemistry. Science. 2001;291:48–9. https://doi.org/10.1126/science.291.5501.48.

    Article  CAS  PubMed  Google Scholar 

  3. Zhang Z, Xu J, Xie J, Zhu S, Li J, Ying G, Chen K. A low-energy and sustainable pulping technology for eucalyptus slabs using a deep eutectic solvent. Green Chem. 2023;25:3256–66. https://doi.org/10.1039/D3GC00589E.

    Article  CAS  Google Scholar 

  4. Lubberink M, Finnigan W, Flitsch SL. Biocatalytic amide bond formation. Green Chem. 2023;25:2958–70. https://doi.org/10.1039/D3GC00456B.

    Article  CAS  Google Scholar 

  5. Liu H, Chen BQ, Pan YJ, Fu CP, Kankala WSB, Chen AZ. Role of supercritical carbon dioxide (scCO2) in fabrication of inorganic-based materials: a green and unique route. Sci Technol Adv Mater. 2021;22:695–717. https://doi.org/10.1080/14686996.2021.1955603.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Akiya N, Savage PE. Roles of water for chemical reactions in high-temperature water. Chem Rev. 2002;102:2725–50. https://doi.org/10.1021/cr000668w.

    Article  CAS  PubMed  Google Scholar 

  7. Lian S, Song C, Liu Q, Duan E, Ren H, Kitamura Y. Recent advances in ionic liquids-based hybrid processes for CO2 capture and utilization. J Environ Sci (China). 2021;99:281–95. https://doi.org/10.1016/j.jes.2020.06.034.

    Article  CAS  PubMed  Google Scholar 

  8. Akizuki M, Fujii T, Hayashi R, Oshima Y. Effects of water on reactions for waste treatment, organic synthesis, and bio-refinery in sub- and supercritical water. J Biosci Bioeng. 2014;117:10–8. https://doi.org/10.1016/j.jbiosc.2013.06.011.

    Article  CAS  PubMed  Google Scholar 

  9. Eckert CA, Liotta CL, Bush D, Brown JS, Hallett JP. Sustainable reactions in tunable solvents. J Phys Chem B. 2004;108:18108–18. https://doi.org/10.1021/jp0487612.

    Article  CAS  Google Scholar 

  10. Kruse A, Dinjus E. Hot compressed water as reaction medium and reactant. Properties and synthesis reactions. J Supercrit Fluids. 2007;39:362–80. https://doi.org/10.1016/j.supflu.2006.03.016.

    Article  CAS  Google Scholar 

  11. Kim J, Kim HJ, Chang S. Synthesis of aromatic nitriles using nonmetallic cyano-group sources. Angew Chem Int Edit. 2012;51:11948–59. https://doi.org/10.1002/anie.201206168.

    Article  CAS  Google Scholar 

  12. Rabinovitch BS, Winkler CA. The hydrolysis of acid amides in concentrated hydrochloric acid solutions. Can J Res. 1942;20b:10. https://doi.org/10.1139/cjr42b-032.

    Article  Google Scholar 

  13. Katritzky AR, Nichols DA, Siskin M, Murugan R, Balasubramanian M. Reactions in high-temperature aqueous media. Chem Rev. 2001;101:837–92. https://doi.org/10.1021/cr960103t.

    Article  CAS  PubMed  Google Scholar 

  14. Ahlbom A, Maschietti M, Nielsen R, Lyckeskog H, Hasani M, Theliander H. Using isopropanol as a capping agent in the hydrothermal liquefaction of Kraft lignin in near-critical water. Energies. 2021;14(4):932. https://doi.org/10.3390/en14040932.

    Article  CAS  Google Scholar 

  15. Lyu X, Xu M, Chen X, Xu L, Wang J, Deng S, Lu X. Beneficial effect of water on the catalytic conversion of sugars to methyl lactate in near-critical methanol solutions. Ind Eng Chem Res. 2019;58:12451–8. https://doi.org/10.1021/acs.iecr.9b02198.

    Article  CAS  Google Scholar 

  16. Nekrasov EV, Tallon SJ, Vyssotski MV, Catchpole OJ. Extraction of lipids from New Zealand fern fronds using near-critical dimethyl ether and dimethyl ether–water–ethanol mixtures. J Supercrit Fluids. 2021;170:105137. https://doi.org/10.1016/j.supflu.2020.105137.

    Article  CAS  Google Scholar 

  17. McConvey IF, Woods D, Lewis M, Gan Q, Nancarrow P. The importance of acetonitrile in the pharmaceutical industry and opportunities for its recovery from waste. Org Process Res Dev. 2012;16:612–24. https://doi.org/10.1021/op2003503.

    Article  CAS  Google Scholar 

  18. Trangwachirachai K, Lin YC. Light hydrocarbon conversion to acrylonitrile and acetonitrile-a review. Dalton T. 2023;52:6211–25. https://doi.org/10.1039/d2dt03795e.

    Article  CAS  Google Scholar 

  19. Yang Y, Li B, Zhang L. Design and synthesis of triphenylamine-malonitrile derivatives as solvatochromic fluorescent dyes. Sensors Actuators B Chem. 2013;183:46–51. https://doi.org/10.1016/j.snb.2013.03.108.

    Article  CAS  Google Scholar 

  20. Hou Y, Dong X, Yang C, Hui Y, Xie Z. MCM-41 immobilized H3PW12O40 catalyzed the addition-elimination reaction of imine with malonitrile in water. Chin J Org Chem. 2018;38:1749–54. https://doi.org/10.6023/cjoc201802006.

    Article  CAS  Google Scholar 

  21. Dionisi EM, Binder JF, LaFortune JHW, Macdonald CLB. A remarkably stable acyclic phosphamethine cyanine dye. Dalton T. 2023;52:2448–54. https://doi.org/10.1039/d2dt04085a.

    Article  CAS  Google Scholar 

  22. Suganya K, Maalmarugan J, Manikandan R, Nagaraj TS, Patel RP, Tamilarasi K, Vimalan M, Senthil Kannan K. Synthesis, studies of 2-benzyl-amino-4-p-tolyl-6,7-di-hydro 5H-cyclo-penta–[b]pyridine-3 carbo-nitrile (BAPTDHCPCN) crystals for optical, photonic and mechano-electronic uses. J Mater Sci-Mater El. 2022;33:19320–30. https://doi.org/10.1007/s10854-022-08770-0.

    Article  CAS  Google Scholar 

  23. Fang X, Yu P, Morandi B. Catalytic reversible alkene-nitrile interconversion through controllable transfer hydrocyanation. Science. 2016;351:832–6. https://doi.org/10.1126/science.aae042.

    Article  CAS  PubMed  Google Scholar 

  24. Huang CP, Chen CY. Toxicity of nitriles and their derivatives on raphidocelis subcapitata (Algae). Proceedings of the 9th international conference on environmental science and technology, vol A-Oral presentations, Pts A and B; 2005; Univ Aegean, Voulgaroktonou 30.

    Google Scholar 

  25. Xiao S, He Y, Xu G, Liu Q. Investigation on claisen rearrangement of allyl phenyl ethers in near-critical water. Res Chem Intermed. 2015;41:3299–305. https://doi.org/10.1007/s11164-013-1433-4.

    Article  CAS  Google Scholar 

  26. Sinaǧ A, Gülbay S, Uskan B, Canel M. Biomass decomposition in near critical water. Energy Convers Manag. 2010;51:612–20. https://doi.org/10.1016/j.enconman.2009.11.009.

    Article  CAS  Google Scholar 

  27. Lesutis HP, Gläser R, Liotta CL, Eckert CA. Acid/base-catalyzed ester hydrolysis in near-critical water. Chem Commun. 1999;20:2063–4. https://doi.org/10.1039/A906401J.

    Article  Google Scholar 

  28. Azadi P, Otomo J, Hatano H, Oshima Y, Farnood R. Hydrogen production by catalytic near-critical water gasification and steam reforming of glucose. Int J Hydrog Energy. 2010;35:3406–14. https://doi.org/10.1016/j.ijhydene.2010.01.069.

    Article  CAS  Google Scholar 

  29. Kang KY, Chun BS. Behavior of hydrothermal decomposition of silk fibroin to amino acids in near-critical water. Korean J Chem Eng. 2004;21:654–9. https://doi.org/10.1007/BF02705501.

    Article  CAS  Google Scholar 

  30. Krieble VK, Noll CI. The hydrolysis of nitriles with acids. J Am Chem Soc. 1939;61:560–3. https://doi.org/10.1021/ja01872a005.

    Article  CAS  Google Scholar 

  31. Bolton PD. Hydrolysis of amides II: substituent effects in dilute acid and alkali. Australian J Chem. 1966;19:1013–21. https://doi.org/10.1071/CH9661013.

    Article  CAS  Google Scholar 

  32. Shi D, Zhu H, Han Y, Zhang Y, Zhao J. Hydrogenation of aliphatic nitriles to primary amines over a bimetallic catalyst Ni25.38Co18.21/MgO–0.75Al2O3 under atmospheric pressure. Catal Lett. 2021;151:2784–94. https://doi.org/10.1007/s10562-021-03532-9.

    Article  CAS  Google Scholar 

  33. Rabinovitch BS, Winkler CA, Stewart ARP. The hydrolysis of propionitrile in concentrated hydrochloric acid solutions. Can J Res. 1942;20b(7):121–32. https://doi.org/10.1139/cjr42b-019.

    Article  Google Scholar 

  34. Rabinovitch BS, Winkler CA. The hydrolysis of aliphatic nitrile in concentrated hydrochloric acid solutions. Can J Res. 1942;20b(10):221–30. https://doi.org/10.1139/cjr42b-032.

    Article  Google Scholar 

  35. Rabinovitch BS, Winkler CA. Kinetics of the alkaline hydrolysis of propionitrile. Can J Res. 1942;20b(9):185–8. https://doi.org/10.1139/cjr42b-026.

    Article  Google Scholar 

  36. Hinzmann A, Stricker M, Gröger H. Chemoenzymatic cascades toward aliphatic nitriles starting from biorenewable feedstocks. ACS Sustain Chem Eng. 2020;8:17088–96. https://doi.org/10.1021/acssuschemeng.0c04981.

    Article  CAS  Google Scholar 

  37. Nguyen HVT, Bin Faheem AB, Kwak K, Lee KK. Propionitrile as a single organic solvent for high voltage electric double-layer capacitors. J Power Sources. 2020;463:228134. https://doi.org/10.1016/j.jpowsour.2020.228134.

    Article  CAS  Google Scholar 

  38. Krikunova LI, Nikolayev AA, Porfiriev DP, Mebel AM. Reaction of propionitrile with methylidyne: a theoretical study. J Chin Chem Soc. 2022;70:439–50. https://doi.org/10.1002/jccs.202200461.

    Article  CAS  Google Scholar 

  39. Izzo B, Klein MT, LaMarca C, Scrivner NC. Hydrothermal reaction of saturated and unsaturated nitriles: reactivity and reaction pathway analysis. Ind Eng Chem Res. 1999;38:1183–91. https://doi.org/10.1021/ie9803218.

    Article  CAS  Google Scholar 

  40. Izzo B, Harrell CL, Klein MT. Nitrile reaction in high-temperature water: kinetics and mechanism. AICHE J. 1997;43:2048–58. https://doi.org/10.1002/aic.690430813.

    Article  CAS  Google Scholar 

  41. Wei J, Shao W, Cao M, Ge J, Yang P, Chen L, Wang X, Kang L. Phenylacetonitrile in locusts facilitates an antipredator defense by acting as an olfactory aposematic signal and cyanide precursor. Sci Adv. 2019;5:eaav5495. https://doi.org/10.1126/sciadv.aav5495.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Perez VC, Zhao H, Lin M, Kim J. Occurrence, function, and biosynthesis of the natural auxin phenylacetic acid (PAA) in plants. Plan Theory. 2023;12:266. https://doi.org/10.3390/plants12020266.

    Article  CAS  Google Scholar 

  43. Ivol F, Porcher M, Ghosh A, Jacquemin J, Ghamouss F. Phenylacetonitrile (C6H5CH2CN) ionic liquid blends as alternative electrolytes for safe and high-performance supercapacitors. Molecules. 2020;25:2697. https://doi.org/10.3390/molecules25112697.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Ren HM, Lu XY. Kinetics of 2,6-difluorobenzonitrile hydrolysis in high temperature liquid water. J Chem Ind Eng (China). 2009;60:1435–41. https://doi.org/10.3969/j.issn.0438-1157.2011.07.016.

    Article  CAS  Google Scholar 

  45. Duan PG, Wang X, Dai LY. Noncatalytic hydrolysis of iminodiacetonitrile in near-critical water-a green process for the manufacture of iminodiacetic acid. Chem Eng Technol. 2007;30:265–9. https://doi.org/10.1002/ceat.200600298.

    Article  CAS  Google Scholar 

  46. Fu J, Ren HM, Zhu J, Lu XY. Hydrolysis kinetics of 2-pyridinecarboxamide, 3-pyridinecarboxamide and 4-pyridinecarboxamide in high-temperature water. Chin J Chem Eng. 2014;22:1005–8. https://doi.org/10.1016/j.cjche.2014.06.024.

    Article  CAS  Google Scholar 

  47. Duan PG, Wang Y, Yang Y, Dai LY. Optimization of adiponitrile hydrolysis in subcritical water using an orthogonal array design. J Solut Chem. 2009;38:241–58. https://doi.org/10.1007/s10953-008-9362-3.

    Article  CAS  Google Scholar 

  48. Duan PG, Niu YL, Wang YY, Dai LY. Hydrolysis of adiponitrile in near-critical water. Chin J Chem. 2008;26:1741–4. https://doi.org/10.1002/cjoc.200890315.

    Article  CAS  Google Scholar 

  49. Kruse A, Vogel H. Heterogeneous catalysis in supercritical media: 2. Near-critical and supercritical water. Chem Eng Technol. 2008;31:1241–5. https://doi.org/10.1002/ceat.200800085.

    Article  CAS  Google Scholar 

  50. Venardou E, Garcia-Verdugo E, Barlow SJ, Gorbaty YE, Poliakoff M. On-line monitoring of the hydrolysis of acetonitrile in near-critical water using Raman spectroscopy. Vib Spectrosc. 2004;35:103–9. https://doi.org/10.1016/j.vibspec.2003.12.003.

    Article  CAS  Google Scholar 

  51. Chandler K, Deng F, Dillow AK, Liotta CL, Eckert CA. Alkylation reactions in near-rritical water in the absence of acid catalysts. Ind Eng Chem Res. 1997;36:5175–9. https://doi.org/10.1021/ie9702688.

    Article  CAS  Google Scholar 

  52. Iyer SD, Klein MT. Effect of pressure on the rate of butyronitrile hydrolysis in high-temperature water. J Supercrit Fluids. 1997;10:191–200. https://doi.org/10.1016/S0896-8446(97)00004-1.

    Article  CAS  Google Scholar 

  53. Ren HM, Lu XY. Reaction kinetics of phenylacetonitrile hydrolysis in NH3-enriched high temperature liquid water. J Chem Ind Eng (China). 2011;62:1892–7. https://doi.org/10.3321/j.issn:0438-1157.2009.06.016.

    Article  CAS  Google Scholar 

  54. Ren HM, Lu XY. Effect of carbon dioxide on phenylacetonitrile hydrolysis in high temperature liquid water. Fine Chemicals. 2012;29:86–90. doi: https://doi.org/CNKI:SUN:JXHG.0.2012-01-022.

    Google Scholar 

  55. Prihod’ko R, Sychev M, Kolomitsyn I, Stobbelaar PJ, EJM H, Santen RA. Layered double hydroxides as catalysts for aromatic nitrile hydrolysis. Microporous Mesoporous Mater. 2002;56:241–55. https://doi.org/10.1016/S1387-1811(02)00468-7.

    Article  Google Scholar 

  56. Schmid TE, Herrera AG, Songis O, Sneddon D, Révolte A, Nahra F, Cazin CSJ. Selective NaOH-catalysed hydration of aromatic nitriles to amides. Cat Sci Technol. 2015;5:2865–8. https://doi.org/10.1039/c5cy00313j.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful for the ffnancial support of the National Key Research and Development Project (2018YFC1902103) and the National Natural Science Foundation of China (21776063).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peigao Duan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Yin, L., Du, Y., Duan, P., Kapusta, K. (2023). Hydrolysis of Nitrile Compounds in Near-Critical Water. In: Fang, Z., Smith Jr, R.L., Xu, L. (eds) Production of N-containing Chemicals and Materials from Biomass. Biofuels and Biorefineries, vol 12. Springer, Singapore. https://doi.org/10.1007/978-981-99-4580-1_1

Download citation

Publish with us

Policies and ethics