Skip to main content

Cardiovascular Challenges in Spinal Cord Injury Rehabilitation

  • Chapter
  • First Online:
A Practical Guide to Care of Spinal Cord Injuries
  • 344 Accesses

Abstract

In this chapter, the author explores the profound impact of spinal cord injuries on autonomic function, with an emphasis on the resulting cardiovascular dysfunction and the challenges it presents for rehabilitation. The chapter also addresses the prevalence of complications such as orthostatic hypotension and autonomic dysreflexia, which can exacerbate the risk of heart disease and stroke in affected individuals. Given the substantial role of cardiovascular dysfunction in morbidity and mortality among patients with spinal cord injuries, the chapter highlights the importance of developing a comprehensive understanding of these alterations and implementing effective management strategies. The author also discusses various diagnostic and therapeutic approaches that can be employed to improve outcomes during the rehabilitation process for individuals facing these complex cardiovascular challenges.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • American Spinal Injury Association (ASIA). International standards to document remaining autonomic function after spinal cord injury. 1st ed. Atlanta, GA: American Spinal Injury Association; 2012.

    Google Scholar 

  • Arnett DK, Blumenthal RS, Albert MA, et al. 2019 ACC/AHA Guideline on the primary prevention of cardiovascular disease: executive summary: a report of the American College of Cardiology/American Heart Association task force on clinical practice guidelines. J Am Coll Cardiol. 2019;74:1376–414.

    Article  PubMed  PubMed Central  Google Scholar 

  • Bauman WA, Spungen AM. Coronary heart disease in individuals with spinal cord injury: assessment of risk factors. Spinal Cord. 2008;46:466–76.

    Article  CAS  PubMed  Google Scholar 

  • Bauman WA, Korsten MA, Radulovic M, et al. 31st g. Heiner Sell lectureship: secondary medical consequences of spinal cord injury. Top Spinal Cord Inj Rehabil. 2012;18:354–78.

    Article  PubMed  PubMed Central  Google Scholar 

  • Biering-Sørensen F, Biering-Sørensen T, Liu N, et al. Alterations in cardiac autonomic control in spinal cord injury. Auton Neurosci. 2018;209:4–18.

    Article  PubMed  Google Scholar 

  • Calvo-Infante R, Narvaez-Rojas A, Padilla-Zambrano H, et al. Cardiovascular complications associated with spinal cord injury. J Acute Dis. 2018;7:139–44.

    Article  Google Scholar 

  • Claydon VE, Krassioukov AV. Orthostatic hypotension and autonomic pathways after spinal cord injury. J Neurotrauma. 2006;23:1713–25.

    Article  PubMed  Google Scholar 

  • Claydon VE, Elliott SL, Sheel AW, et al. Cardiovascular responses to vibrostimulation for sperm retrieval in men with spinal cord injury. J Spinal Cord Med. 2006a;29:207–16.

    Article  PubMed  PubMed Central  Google Scholar 

  • Claydon VE, Steeves JD, Krassioukov A. Orthostatic hypotension following spinal cord injury: understanding clinical pathophysiology. Spinal Cord. 2006b;44:341–51.

    Article  CAS  PubMed  Google Scholar 

  • Consortium for Spinal Cord Medicine. Early acute management in adults with spinal cord injury: a clinical practice guideline for health-care professionals. J Spinal Cord Med. 2008;31:403–79.

    Article  Google Scholar 

  • Cragg JJ, Noonan VK, Krassioukov A, et al. Cardiovascular disease and spinal cord injury: results from a national population health survey. Neurology. 2013;81:723–8.

    Article  PubMed  PubMed Central  Google Scholar 

  • Curt A, Nitsche B, Rodic B, et al. Assessment of autonomic dysreflexia in patients with spinal cord injury. J Neurol Neurosurg Psychiatry. 1997;62:473–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Davidson R, Phillips A. Cardiovascular physiology and responses to sexual activity in individuals living with spinal cord injury. Top Spinal Cord Inj Rehabil. 2017;23:11–9.

    Article  PubMed  PubMed Central  Google Scholar 

  • Dhall SS, Hadley MN, Aarabi B, et al. Deep venous thrombosis and thromboembolism in patients with cervical spinal cord injuries. Neurosurgery. 2013;72(Suppl 2):244–54.

    Article  PubMed  Google Scholar 

  • Dyson-Hudson T, Nash M. Guideline-driven assessment of cardiovascular disease and related risks after spinal cord injury. Top Spinal Cord Inj Rehabil. 2009;14:32–45.

    Article  Google Scholar 

  • Eldahan KC, Rabchevsky AG. Autonomic dysreflexia after spinal cord injury: systemic pathophysiology and methods of management. Auton Neurosci. 2018;209:59–70.

    Article  PubMed  Google Scholar 

  • Eltorai IM, Schmit JK. Emergencies in chronic spinal cord injury patients. Jackson Heights, NY: Eastern Paralyzed Veterans Association; 2001.

    Google Scholar 

  • Franga DL, Hawkins ML, Medeiros RS, et al. Recurrent asystole resulting from high cervical spinal cord injuries. Am Surg. 2006;72:525–9.

    Article  CAS  PubMed  Google Scholar 

  • Frisbie JH, Steele DJ. Postural hypotension and abnormalities of salt and water metabolism in myelopathy patients. Spinal Cord. 1997;35:303–7.

    Article  CAS  PubMed  Google Scholar 

  • Furlan JC, Fehlings MG. Cardiovascular complications after acute spinal cord injury: pathophysiology, diagnosis, and management. Neurosurg Focus. 2008;25:E13.

    Article  PubMed  Google Scholar 

  • Furlan JC, Fehlings MG, Shannon P, et al. Descending vasomotor pathways in humans: correlation between axonal preservation and cardiovascular dysfunction after spinal cord injury. J Neurotrauma. 2003;20:1351–63.

    Article  PubMed  Google Scholar 

  • Garshick E, Kelley A, Cohen SA, et al. A prospective assessment of mortality in chronic spinal cord injury. Spinal Cord. 2005;43:408–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Glenn MB, Bergman SB. Cardiovascular changes following spinal cord injury. Top Spinal Cord Inj Rehabil. 1997;2:47–53.

    Google Scholar 

  • Goldberg R. Guideline-driven intervention on SCI-associated dyslipidemia, metabolic syndrome, and glucose intolerance using pharmacological agents. Top Spinal Cord Inj Rehabil. 2009;14:46–57.

    Article  Google Scholar 

  • Grew M, Kirshblum SC, Wood K, et al. The ankle brachial index in chronic spinal cord injury: a pilot study. J Spinal Cord Med. 2000;23:284–8.

    Article  CAS  PubMed  Google Scholar 

  • Groah SL, Weitzenkamp D, Sett P, et al. The relationship between neurological level of injury and symptomatic cardiovascular disease risk in the aging spinal injured. Spinal Cord. 2001;39:310–7.

    Article  CAS  PubMed  Google Scholar 

  • Groah S, Hosier H, Ward E, et al. Cardiometabolic risk clustering and atherosclerosis: is there a link in spinal cord injury? Top Spinal Cord Inj Rehabil. 2011;16:1–13.

    Article  Google Scholar 

  • Groothuis J, Thijssen D, Rongen GA, et al. Angiotensin II contributes to the increased baseline leg vascular resistance in spinal cord-injured individuals. J Hypertens. 2010;28:2094–101.

    Article  CAS  PubMed  Google Scholar 

  • Grundy SM, Stone NJ, Bailey AL, et al. 2018 AHA/ACC/AACVPR/AAPA/ABC/ACPM/ADA/AGS/APhA/ASPC/NLA/PCNA Guideline on the management of blood cholesterol: a report of the American College of Cardiology/American Heart Association task force on clinical practice guidelines. Circulation. 2019;139:e1082–143.

    PubMed  Google Scholar 

  • Hagen EM. Acute complications of spinal cord injuries. World J Orthop. 2015;6:17–2.

    Article  PubMed  PubMed Central  Google Scholar 

  • Helkowski WM, Ditunno JF Jr, Boninger M. Autonomic dysreflexia: incidence in persons with neurologically complete and incomplete tetraplegia. J Spinal Cord Med. 2003;26:244–7.

    Article  PubMed  Google Scholar 

  • Hubli M, Gee CM, Krassioukov AV. Refined assessment of blood pressure instability after spinal cord injury. Am J Hypertens. 2015;28:173–81.

    Article  PubMed  Google Scholar 

  • Kano M, Moskowitz MA, Yokota M. Parasympathetic denervation of rat pial vessels significantly increases infarction volume following middle cerebral artery occlusion. J Cereb Blood Flow Metab. 1991;11:628–37.

    Article  CAS  PubMed  Google Scholar 

  • Kaufmann H. Consensus statement on the definition of orthostatic hypotension, pure autonomic failure and multiple system atrophy. Clin Auton Res. 1996;6:125–6.

    Article  CAS  PubMed  Google Scholar 

  • Kirshblum SC, House JG, O’Connor KC. Silent autonomic dysreflexia during a routine bowel program in persons with traumatic spinal cord injury: a preliminary study. Arch Phys Med Rehabil. 2002;83:1774–6.

    Article  PubMed  Google Scholar 

  • Krassioukov A. Autonomic function following cervical spinal cord injury. Respir Physiol Neurobiol. 2009;169:157–64.

    Article  PubMed  Google Scholar 

  • Krassioukov A, Claydon VE. The clinical problems in cardiovascular control following spinal cord injury: an overview. Prog Brain Res. 2006;152:223–9.

    Article  PubMed  Google Scholar 

  • Krassioukov A, Eng JJ, Warburton DE, et al. A systematic review of the management of orthostatic hypotension after spinal cord injury. Arch Phys Med Rehabil. 2009a;90:876–85.

    Article  PubMed  PubMed Central  Google Scholar 

  • Krassioukov A, Warburton DE, Teasell R, et al. A systematic review of the management of autonomic dysreflexia after spinal cord injury. Arch Phys Med Rehabil. 2009b;90:682–95.

    Article  PubMed  PubMed Central  Google Scholar 

  • Krassioukov A, Linsenmeyer TA, Beck LA, et al. Evaluation and management of autonomic dysreflexia and other autonomic dysfunctions: preventing the highs and lows: management of blood pressure, sweating, and temperature dysfunction. Top Spinal Cord Inj Rehabil. 2021;27:225–90.

    Article  PubMed  PubMed Central  Google Scholar 

  • Lavis TD, Scelza WM, Bockenek WL. Cardiovascular health and fitness in persons with spinal cord injury. Phys Med Rehabil Clin N Am. 2007;18:317–31.

    Article  PubMed  Google Scholar 

  • Lee BY, Karmakar MG, Herz BL, et al. Autonomic dysreflexia revisited. J Spinal Cord Med. 1995;18:75–87.

    Article  CAS  PubMed  Google Scholar 

  • Lehmann KG, Lane JG, Piepmeier JM, et al. Cardiovascular abnormalities accompanying acute spinal cord injury in humans: incidence, time course and severity. J Am Coll Cardiol. 1987;10:46–52.

    Article  CAS  PubMed  Google Scholar 

  • Mallek JT, Inaba K, Branco BC, et al. The incidence of neurogenic shock after spinal cord injury in patients admitted to a high-volume level I trauma center. Am Surg. 2012;78:623–6.

    Article  PubMed  Google Scholar 

  • Mathias CJ. Bradycardia and cardiac arrest during tracheal suction-mechanisms in tetraplegic patients. Eur J Intensive Care Med. 1976;2:147–56.

    Article  CAS  PubMed  Google Scholar 

  • Mathias CJ, Bannister R. Autonomic disturbances in spinal cord lesions. In: Weaver LC, Polosa C, editors. Autonomic failure: a textbook of clinical disorders of the autonomic nervous system. 4th ed. New York: Oxford University Press; 2002.

    Google Scholar 

  • Mathias CJ, Christensen NJ, Frankel HL, et al. Cardiovascular control in recently injured tetraplegics in spinal shock. Q J Med. 1979;48:273–87.

    CAS  PubMed  Google Scholar 

  • McMahon D, Tutt M, Cook AM. Pharmacological management of hemodynamic complications following spinal cord injury. Orthopedics. 2009;32:331.

    PubMed  Google Scholar 

  • Moerman JR, Christie B 3rd, Sykes LN, et al. Early cardiac pacemaker placement for life-threatening bradycardia in traumatic spinal cord injury. J Trauma. 2011;70:1485–8.

    PubMed  Google Scholar 

  • Myers J, Lee M, Kiratli J. Cardiovascular disease in spinal cord injury: an overview of prevalence, risk, evaluation, and management. Am J Phys Med Rehabil. 2007;86:142–52.

    Article  PubMed  Google Scholar 

  • Ogoh S, Yoshiga CC, Secher NH, et al. Carotid-cardiac baroreflex function does not influence blood pressure regulation during head-up tilt in humans. J Physiol Sci. 2006;56:227–33.

    Article  PubMed  Google Scholar 

  • Ong B, Wilson JR, Henzel MK. Management of the patient with chronic spinal cord injury. Med Clin North Am. 2020;104:263–78.

    Article  PubMed  Google Scholar 

  • Partida E, Mironets E, Hou S, et al. Cardiovascular dysfunction following spinal cord injury. Neural Regen Res. 2016;11:189–94.

    Article  PubMed  PubMed Central  Google Scholar 

  • Phillips AA, Krassioukov AV. Contemporary cardiovascular concerns after spinal cord injury: mechanisms, maladaptations, and management. J Neurotrauma. 2015;32:1927–42.

    Article  PubMed  Google Scholar 

  • Phillips AA, Krassioukov AV, Ainslie P, et al. Baroreflex function following spinal cord injury. J Neurotrauma. 2012;29:2432–45.

    Article  Google Scholar 

  • Phillips AA, Krassioukov AV, Ainslie PN, et al. Perturbed and spontaneous regional cerebral blood flow responses to changes in blood pressure after high level spinal cord injury: the effect of midodrine. J Appl Physiol. 2014a;116:645–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Phillips AA, Warburton DE, Ainslie PN, et al. Regional neurovascular coupling and cognitive performance in those with low blood pressure secondary to high-level spinal cord injury: improved by alpha-1 agonist midodrine hydrochloride. J Cereb Blood Flow Metab. 2014b;34:794–801.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Phillips AA, Elliott SL, Zheng MM, et al. Selective alpha adrenergic antagonist reduces severity of transient hypertension during sexual stimulation after spinal cord injury. J Neurotrauma. 2015;32:392–6.

    Article  PubMed  Google Scholar 

  • Piepmeier JM, Lehmann KB, Lane JG. Cardiovascular instability following acute cervical spinal cord trauma. Cent Nerv Syst Trauma. 1985;2:153–60.

    Article  CAS  PubMed  Google Scholar 

  • Rosner MJ, Elias Z, Coley I. New principles of resuscitation for brain and spinal injury. N C Med J. 1984;45:701–8.

    CAS  PubMed  Google Scholar 

  • Ruiz I, Squair J, Phillips A, et al. Incidence and natural progression of neurogenic shock after traumatic spinal cord injury. J Neurotrauma. 2018;35:461–6.

    Article  PubMed  Google Scholar 

  • Ryken TC, Hurlbert RJ, Hadley MN, et al. The acute cardiopulmonary management of patients with cervical spinal cord injuries. Neurosurgery. 2013;72(Suppl 2):84–92.

    Article  PubMed  Google Scholar 

  • Sadaka F, Veremakis C. Bradycardia secondary to cervical spinal cord injury. In: Breijo-Marquez FR, editor. Cardiac arrhythmias. London: IntechOpen; 2012. Available from: https://www.intechopen.com/books/cardiac-arrhythmias-new-considerations/bradycardia-secondary-to-cervical-spinal-cord-injury.

    Google Scholar 

  • Sadaka F, Naydenov SK, Ponzillo JJ. Theophylline for bradycardia secondary to cervical spinal cord injury. Neurocrit Care. 2010;13:389–92.

    Article  CAS  PubMed  Google Scholar 

  • Sutters M, Wakefield C, O’Neil K, et al. The cardiovascular, endocrine and renal response of tetraplegic and paraplegic subjects to dietary sodium restriction. J Physiol. 1992;457:515–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Teasell RW, Arnold JM, Krassioukov A, et al. Cardiovascular consequences of loss of supraspinal control of the sympathetic nervous system after spinal cord injury. Arch Phys Med Rehabil. 2000;81:506–16.

    Article  CAS  PubMed  Google Scholar 

  • Teasell RW, Hsieh JT, Aubut JA, et al., Spinal Cord Injury Rehabilitation Evidence Review Research Team. Venous thromboembolism after spinal cord injury. Arch Phys Med Rehabil. 2009;90:232–45.

    Google Scholar 

  • Wan D, Krassioukov AV. Life-threatening outcomes associated with autonomic dysreflexia: a clinical review. J Spinal Cord Med. 2014;37:2–10.

    Article  PubMed  PubMed Central  Google Scholar 

  • Watson N. Venous thrombosis and pulmonary embolism in spinal cord injury. Paraplegia. 1968;6:13–21.

    Google Scholar 

  • Weant KA, Kilpatrick M, Jaikumar S. Aminophylline for the treatment of symptomatic bradycardia and asystole secondary to cervical spine injury. Neurocrit Care. 2007;7:250–2.

    Article  CAS  PubMed  Google Scholar 

  • Wecht JM, Bauman WA. Decentralized cardiovascular autonomic control and cognitive deficits in persons with spinal cord injury. J Spinal Cord Med. 2013;36:74–81.

    Article  PubMed  PubMed Central  Google Scholar 

  • West CR, Mills P, Krassioukov AV. Influence of the neurological level of spinal cord injury on cardiovascular outcomes in humans: a meta-analysis. Spinal Cord. 2012;50:484–92.

    Article  CAS  PubMed  Google Scholar 

  • West CR, Bellantoni A, Krassioukov AV. Cardiovascular function in individuals with incomplete spinal cord injury: a systematic review. Top Spinal Cord Inj Rehabil. 2013;19:267–78.

    Article  PubMed  PubMed Central  Google Scholar 

  • Whitman CB, Schroeder WS, Ploch PJ, et al. Efficacy of aminophylline for treatment of recurrent symptomatic bradycardia after spinal cord injury. Pharmacotherapy. 2008;28:131–5.

    Article  CAS  PubMed  Google Scholar 

  • Wood GC, Boucher AB, Johnson JL, et al. Effectiveness of pseudoephedrine as adjunctive therapy for neurogenic shock after acute spinal cord injury: a case series. J Am Coll Clin Pharm. 2013;34:89–93.

    Google Scholar 

  • Yekutiel M, Brooks ME, Ohry A, et al. The prevalence of hypertension, ischaemic heart disease and diabetes in traumatic spinal cord injured patients and amputees. Paraplegia. 1989;27:58–62.

    CAS  PubMed  Google Scholar 

  • Yoon JA, Shin YB, Shin MJ, et al. Cardiovascular monitoring during video urodynamic studies in persons with spinal cord injury. Am J Phys Med Rehabil. 2018;97:1–6.

    Article  PubMed  Google Scholar 

  • Yue JK, Winkler EA, Rick JW, et al. Update on critical care for acute spinal cord injury in the setting of polytrauma. Neurosurg Focus. 2017;43:E19.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ko, HY. (2023). Cardiovascular Challenges in Spinal Cord Injury Rehabilitation. In: A Practical Guide to Care of Spinal Cord Injuries. Springer, Singapore. https://doi.org/10.1007/978-981-99-4542-9_22

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-4542-9_22

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-4541-2

  • Online ISBN: 978-981-99-4542-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics