Skip to main content

Simultaneous Brain Stimulation and Acquisition

  • Chapter
  • First Online:
Therapeutics of Neural Stimulation for Neurological Disorders
  • 316 Accesses

Abstract

Transcranial magnetic stimulation (TMS) is a noninvasive stimulation technique applied to the cerebral cortex for the treatment of functional brain disorders, but also for the research of brain mechanisms. The combination of TMS with functional brain examination techniques such as fMRI, positron emission tomography (PET), and electroencephalography (EEG) makes it possible to observe brain network activities associated with specific functional cortices and elucidate the association between cortical networks and behaviors. It can also reveal neural mechanisms and efficacy predictive markers associated with rTMS treatment. This chapter will describe TMS and several functional brain examination techniques, the combination of TMS with these techniques, and related studies on their applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Adrian ED (1936) The spread of activity in the cerebral cortex. J Physiol 88:127–161

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aurora SK, Ahmad BK, Welch KM et al (1998) Transcranial magnetic stimulation confirms hyperexcitability of occipital cortex in migraine. Neurology 50:1111–1114

    Article  CAS  PubMed  Google Scholar 

  • Badier JM, Dubarry AS, Gavaret M et al (2017) Technical solutions for simultaneous MEG and SEEG recordings: towards routine clinical use. Physiol Meas. 38:N118-NN27 38:N118

    Article  CAS  PubMed  Google Scholar 

  • Baeken C, Marinazzo D, Everaert H et al (2015) The impact of accelerated HF-rTMS on the subgenual anterior cingulate cortex in refractory unipolar major depression: insights from 18FDG PET brain imaging. Brain Stimul 8:808–815

    Article  PubMed  Google Scholar 

  • Bestmann S, Swayne O, Blankenburg F et al (2008) Dorsal premotor cortex exerts state-dependent causal influences on activity in contralateral primary motor and dorsal premotor cortex. Cereb Cortex 18:1281–1291

    Article  PubMed  Google Scholar 

  • Blankenburg F, Ruff CC, Bestmann S et al (2008) Interhemispheric effect of parietal TMS on somatosensory response confirmed directly with concurrent TMS-fMRI. J Neurosci 28:13202–13208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bohning DE, Shastri A, McConnell KA et al (1999) A combined TMS/fMRI study of intensity-dependent TMS over motor cortex. Biol Psychiatry 45:385–394

    Article  CAS  PubMed  Google Scholar 

  • Buser P, Bancaud J, Talairach J et al (1969) Amygdalo-hippocampal interconnections in man. Physiological study during stereotaxic explorations[J]. Electroencephalogr Clin Neurophysiol 26(6):637

    CAS  PubMed  Google Scholar 

  • Chen AC, Oathes DJ, Chang C et al (2013) Causal interactions between fronto-parietal central executive and default-mode networks in humans. Proc Natl Acad Sci U S A 110:19944–19949

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cho SS, Strafella AP (2009) rTMS of the left dorsolateral prefrontal cortex modulates dopamine release in the ipsilateral anterior cingulate cortex and orbitofrontal cortex. PLoS One 4:e 6725

    Google Scholar 

  • Cracco RQ, Amassian VE, Maccabee PJ et al (1989) Comparison of human transcallosal responses evoked by magnetic coil and electrical stimulation. Electroencephalogr Clin Neurophysiol 74:417–424

    Article  CAS  PubMed  Google Scholar 

  • Dubarry AS, Badier JM, Trebuchon-Da FA et al (2014) Simultaneous recording of MEG, EEG and intracerebral EEG during visual stimulation: from feasibility to single-trial analysis. NeuroImage 99:548–558

    Article  PubMed  Google Scholar 

  • Fox PT, Narayana S, Tandon N et al (2006) Intensity modulation of TMS-induced cortical excitation: primary motor cortex. Hum Brain Mapp 27:478–487

    Article  PubMed  Google Scholar 

  • Fujiwara T, Rothwell J (2004) The after effects of motor cortex rTMS depend on the state of contraction when rTMS is applied. Clin Neurophysiol 115:1514–1518

    Article  PubMed  Google Scholar 

  • Gavaret M, Dubarry AS, Carron et al (2016) Simultaneous SEEG-MEG-EEG recordings overcome the SEEG limited spatial sampling. Epilepsy Res 128(67):72

    Google Scholar 

  • Goldring S, Harding GW, Gregorie EM (1994) Distinctive electrophysiological characteristics of functionally discrete brain areas: a tenable approach to functional localization[J]. J Neurosurg 80(4):701–709

    Article  CAS  PubMed  Google Scholar 

  • Hanakawa T, Mima T, Matsumoto R et al (2009) Stimulus-response profile during single-pulse transcranial magnetic stimulation to the primary motor cortex. Cereb Cortex 19:2605–2615

    Article  PubMed  Google Scholar 

  • Hanlon C, Canterberry M, Taylor J et al (2013) Probing the frontostriatal loops involved in executive and limbic processing via interleaved TMS and functional MRI at two prefrontal locations: a pilot study. PLoS One 8:e67917

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hanlon C, Dowdle L, Moss H et al (2016) Mobilization of medial and lateral frontal-striatal circuits in cocaine users and controls: an interleaved TMS/BOLD functional connectivity study. Neuropsychopharmacology 41:3032–3041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hawco C, Voineskos A, Steeves J et al (2018) Spread of activity following TMS is related to intrinsic resting connectivity to the salience network: a concurrent TMS-fMRI study. Cortex 108:160–172

    Article  PubMed  Google Scholar 

  • Hayward G, Mehta M, Harmer C et al (2007) Exploring the physiological effects of double-cone coil TMS over the medial frontal cortex on the anterior cingulate cortex: an H2(15)O PET study. Eur J Neurosci 25:2224–2233

    Article  PubMed  Google Scholar 

  • Howard MA, Volkov IO, Mirsky R et al (2000) Auditory cortex on the human posterior superior temporal gyrus. J Comp Neurol 416:79–92

    Article  CAS  PubMed  Google Scholar 

  • Kakisaka Y, Kubota Y, Wang ZI et al (2012) Use of simultaneous depth and MEG recording may provide complementary information regarding the epileptogenic region. Epileptic Disord 14:298–303

    Article  PubMed  Google Scholar 

  • Ko JH, Monchi O, Ptito A et al (2008) Theta burst stimulation-induced inhibition of dorsolateral prefrontal cortex reveals hemispheric asymmetry in striatal dopamine release during a set-shifting task – a TMS–[11C] raclopride PET study. Eur J Neurosci 28:2147–2155

    Google Scholar 

  • Krieg J, Koessler L, Jonas J et al (2017) Discrimination of a medial functional module within the temporal lobe using an effective connectivity model: a CCEP study. NeuroImage 161:219–231

    Article  PubMed  Google Scholar 

  • Lee L, Siebner HR, Rowe JB et al (2003) Acute remapping within the motor system induced by low-frequency repetitive transcranial magnetic stimulation. J Neurosci 23:5308–5318

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li X, Tenebäck C, Nahas Z et al (2004) Interleaved transcranial magnetic stimulation/functional MRI confirms that lamotrigine inhibits cortical excitability in healthy young men. Neuropsychopharmacology 29:1395–1407

    Article  CAS  PubMed  Google Scholar 

  • Matsumoto R, Kunieda T, Nair D (2017) Single pulse electrical stimulation to probe functional and pathological connectivity in epilepsy. Seizure 44:27–36

    Article  PubMed  Google Scholar 

  • Matsumoto R, Nair DR, LaPresto E et al (2004) Functional connectivity in the human language system: a cortico-cortical evoked potential study. Brain 127:2316–2330

    Article  PubMed  Google Scholar 

  • Mottaghy F, Keller C, Gangitano M et al (2002) Correlation of cerebral blood flow and treatment effects of repetitive transcranial magnetic stimulation in depressed patients. Psychiatry Res 115:1–14

    Article  PubMed  Google Scholar 

  • Mulckhuyse M, Engelmann JB, Schutter DJLG et al (2017) Right posterior parietal cortex is involved in disengaging from threat: a 1-Hz rTMS study. Soc Cogn Affect Neurosci 12:1814–1822

    Article  PubMed  PubMed Central  Google Scholar 

  • Nadeau S, McCoy K, Crucian G et al (2002) Cerebral blood flow changes in depressed patients after treatment with repetitive transcranial magnetic stimulation: evidence of individual variability. Neuropsychiatry Neuropsychol Behav Neurol 15:159–175

    PubMed  Google Scholar 

  • Ortu E, Deriu F, Suppa A et al (2008) Effects of volitional contraction on intracortical inhibition and facilitation in the human motor cortex. J Physiol 586:5147–5159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Paus T, Jech R, Thompson CJ et al (1997) Transcranial magnetic stimulation during positron emission tomography: a new method for studying connectivity of the human cerebral cortex. J Neurosci 17:3178–3184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Paus T, Sipila PK, Strafella AP (2001) Synchronization of neuronal activity in the human primary motor cortex by transcranial magnetic stimulation: an EEG study. J Neurophysiol 86:1983–1990

    Article  CAS  PubMed  Google Scholar 

  • Plewnia C, Reimold M, Najib A et al (2007) Dose-dependent attenuation of auditory phantom perception (tinnitus s) by PET-guided repetitive transcranial magnetic stimulation. Hum Brain Mapp 28:238–246

    Article  PubMed  Google Scholar 

  • Raichle ME (2010) Two views of brain function. Trends Cogn Sci 14:180–190

    Article  PubMed  Google Scholar 

  • Ruff CC, Bestmann S, Blankenburg F et al (2008) Distinct causal influences of parietal versus frontal areas on human visual cortex: evidence from concurrent TMS-fMRI. Cereb Cortex 18:817–827

    Article  PubMed  Google Scholar 

  • Sack A, Kohler A, Bestmann S et al (2007) Imaging the brain activity changes underlying impaired visuospatial judgments: simultaneous FMRI, TMS, and behavioral studies. Cereb Cortex 17:2841–2852

    Article  PubMed  Google Scholar 

  • Salinas FS, Franklin C, Narayana S et al (2016) Repetitive transcranial magnetic stimulation educes frequency-specific causal relationships in the motor network. Brain Stimul 9:406–414

    Google Scholar 

  • Santiuste M, Nowak R, Russi A et al (2008) Simultaneous magnetoencephalography and intracranial EEG registration: technical and clinical aspects. J Clin Neurophysiol 25:331–339

    Article  PubMed  Google Scholar 

  • Shang Y, Xie J, Peng W et al (2018) Network-wise cerebral blood flow redistribution after 20 Hz rTMS on left dorso-lateral prefrontal cortex. Eur J Radiol 101:144–148

    Article  PubMed  Google Scholar 

  • Shigeto H, Morioka T, Hisada K et al (2002) Feasibility and limitations of magnetoencephalographic detection of epileptic discharges: simultaneous recording of magnetic fields and electrocorticography. Neurol Res 24:531–536

    Article  PubMed  Google Scholar 

  • Sibon I, Strafella AP, Gravel P et al (2007) Acute prefrontal cortex TMS in healthy volunteers: effects on brain 11C-alphaMtrp trapping. NeuroImage 34:1658–1664

    Article  CAS  PubMed  Google Scholar 

  • Siebner HR, Filipovic SR, Rowe JB et al (2003) Patients with focal arm dystonia have increased sensitivity to slow-frequency repetitive TMS of the dorsal premotor cortex. Brain 126:2710–2725

    Article  PubMed  Google Scholar 

  • Siebner HR, Willoch F, Peller M et al (1998) Imaging brain activation induced by long trains of repetitive transcranial magnetic stimulation. Neuroreport 9:943–948

    Article  CAS  PubMed  Google Scholar 

  • Song P, Lin H, Li S et al (2019a) Repetitive transcranial magnetic stimulation (rTMS) modulates time-varying electroencephalography (EEG) network in primary insomnia patients: a TMS-EEG study. Sleep Med 56:157–163

    Article  PubMed  Google Scholar 

  • Song P, Lin H, Liu C et al (2019b) Transcranial magnetic stimulation to the middle frontal gyrus during attention modes induced dynamic module reconfiguration in brain networks. Front Neuroinform 13:22

    Article  PubMed  PubMed Central  Google Scholar 

  • Speer AM, Kimbrell TA, Wassermann EM et al (2000) Opposite effects of high and low frequency rTMS on regional brain activity in depressed patients. Biol Psychiatry 48:1133–1141

    Article  CAS  PubMed  Google Scholar 

  • Strafella AP, Paus T (2001) Cerebral blood-flow changes induced by paired-pulse transcranial magnetic stimulation of the primary motor cortex. J Neurophysiol 85:2624–2629

    Article  CAS  PubMed  Google Scholar 

  • Strafella AP, Ko JH, Grant J et al (2005) Corticostriatal functional interactions in Parkinson’s disease: a rTMS/[11C] raclopride PET study. Eur J Neurosci 22:2946–2952

    Google Scholar 

  • Strafella AP, Paus T, Barrett J et al (2001) Repetitive transcranial magnetic stimulation of the human prefrontal cortex induces dopamine release in the caudate nucleus. J Neurosci 21:RC157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Valentin A, Alarcon G, Honavar M et al (2005) Single pulse electrical stimulation for identification of structural abnormalities and prediction of seizure outcome after epilepsy surgery: a prospective study. Lancet Neurol 4:718–726

    Article  PubMed  Google Scholar 

  • Vink J, Mandija S, Petrov P et al (2018) A novel concurrent TMS-fMRI method to reveal propagation patterns of prefrontal magnetic brain stimulation. Hum Brain Mapp 39:4580–4592

    Article  PubMed  PubMed Central  Google Scholar 

  • Webler R, Hamady C, Molnar C et al (2020) Decreased interhemispheric connectivity and increased cortical excitability in unmedicated schizophrenia: a prefrontal interleaved TMS fMRI study. Brain Stimul 13:1467–1475

    Article  PubMed  Google Scholar 

  • Wilson CL, Isokawa M, Babb TL et al (1991) Functional connections in the human temporal lobe. I. Analysis of limbic system pathways using neuronal responses evoked by electrical stimulation. Exp Brain Res 85(2):279–292

    Google Scholar 

  • Winhuisen L, Thiel A, Schumacher B et al (2005) Role of the contralateral inferior frontal gyrus in recovery of language function in poststroke aphasia: a combined repetitive transcranial magnetic stimulation and positron emission tomography study. Stroke 36:1759–1763

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wang, L., Wang, K., Ji, G., Song, P., Wang, D., Zhang, X. (2023). Simultaneous Brain Stimulation and Acquisition. In: Wang, Y. (eds) Therapeutics of Neural Stimulation for Neurological Disorders. Springer, Singapore. https://doi.org/10.1007/978-981-99-4538-2_12

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-4538-2_12

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-4537-5

  • Online ISBN: 978-981-99-4538-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics