Skip to main content

Transcranial Ultrasonic Neurostimulation

  • Chapter
  • First Online:
Therapeutics of Neural Stimulation for Neurological Disorders
  • 365 Accesses

Abstract

Medical ultrasound is a common technology for clinical diagnosis and treatment, with the advantages of noninvasive, non-radioactive, easy and fast to use, and low equipment cost. Ultrasound is a mechanical wave that can enter the body in a noninvasive manner. During the transmission of ultrasound in the human body, echoes are generated due to the different acoustic impedances of different tissues and organs. As the echoes carry information about the difference in acoustic impedance of tissues, the echo information can be obtained to demodulate the corresponding tissue information and obtain structural images of tissues and organs to help diagnose diseases. In addition to image diagnosis, ultrasound technology has been successfully applied to the clinical treatment of tumors and other diseases, such as the elimination of lesions by thermal ablation using high-intensity ultrasound. Recent advances in ultrasound technology have enabled the application of ultrasound wave to open the blood-brain barrier in a noninvasive manner and facilitate the delivery of drugs to areas of brain diseases, which enhances the therapeutic effect of brain tumors and other diseases. In addition, studies have shown that acoustic radiation force can open mechanosensitive ion channels to modulate the electrical activity of neurons, further expanding the prospects for the application of ultrasound in the treatment of brain diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adams JB, Moore RG, Anderson JH et al (1996) High-intensity focused ultrasound ablation of rabbit kidney tumors. 10(1):71–75

    Google Scholar 

  • Asan AS, Kang Q, Oralkan O et al (2021) Entrainment of cerebellar Purkinje cell spiking activity using pulsed ultrasound stimulation. Brain Stimul 14(3):598–606

    Google Scholar 

  • Azadeh SS, Lordifard P, Soheilifar MH et al (2021) Ultrasound and sonogenetics: A new perspective for controlling cells with sound. Iran J Pharm Res 20(3):151–160

    Google Scholar 

  • Baker KG, Robertson VJ, Duck FA (2001) A review of therapeutic ultrasound: Biophysical effects. Phys Ther 81(7):1351–1358

    Google Scholar 

  • Barnard JW, Fry WJ, Fry FJ et al (1955) Effects of high intensity ultrasound on the central nervous system of the cat. J Comp Neurol 103(3):459–484

    Google Scholar 

  • Beisteiner R, Matt E, Fan C et al (2020) Transcranial pulse stimulation with ultrasound in Alzheimer’s disease—a new navigated focal brain therapy. Advanced Science 7(3):1902583 https://doi.org/10.1002/advs.201902583

  • Bobola MS, Chen L, Ezeokeke CK et al (2020) Transcranial focused ultrasound, pulsed at 40 Hz, activates microglia acutely and reduces Aβ load chronically, as demonstrated in vivo. Brain Stimul 13(4):1014–1023

    Google Scholar 

  • Chang WHS, Sun JS, Chang SP et al (2002) Study of thermal effects of ultrasound stimulation on fracture healing. Bioelectromagnetics 23(4):256–263

    Google Scholar 

  • Chen SG, Tsai CH, Lin CJ et al (2020) Transcranial focused ultrasound pulsation suppresses pentylenetetrazol induced epilepsy in vivo. Brain Stimul 13(1):35–46

    Google Scholar 

  • Cheng SQ, Zhou XD, Tang ZY et al (1997) Iodized oil enhances the thermal effect of high-intensity focused ultrasound on ablating experimental liver cancer. J Cancer Res Clin Oncol 123(11):639–644

    Google Scholar 

  • Darrow DP (2019) Focused ultrasound for neuromodulation. Neurotherapeutics 16:88–99. https://doi.org/10.1007/s13311-018-00691-3.

  • Deffieux T, Younan Y, Wattiez N et al (2013) Low-intensity focused ultrasound modulates monkey Visuomotor behavior. Curr Biol 23(23): 2430–2433. https://doi.org/10.1016/j.cub.2013.10.029

  • Duque M, Lee-Kubli CA, Tufail Y et al (2022) Sonogenetic control of mammalian cells using exogenous transient receptor potential A1 channels. Nat Commun 13(1):600

    Google Scholar 

  • Fini M, Tyler WJ (2017) Transcranial focused ultrasound: a new tool for non-invasive neuromodulation. Int Rev Psychiatry 29(2):168–177

    Google Scholar 

  • Fomenko A, Chen KS, Nankoo JF et al (2020) Systematic examination of low-intensity ultrasound parameters on human motor cortex excitability and behavior. Elife 9:e54497

    Google Scholar 

  • Fomenko A, Neudorfer C, Dollapiazza RF et al (2018) Low-intensity ultrasound neuromodulation: an overview of mechanisms and emerging human applications. Brain Stimul 11(6):1209–1217

    Google Scholar 

  • Fouragnan EF, Chau BKH, Folloni D et al (2019) The macaque anterior cingulate cortex translates counterfactual choice value into actual behavioral change. Nat Neurosci 22(5): 797–808. https://doi.org/10.1038/s41593-019-0375-6

  • Guo T, Li H, Lv Y et al (2015) Pulsed transcranial ultrasound stimulation immediately after the ischemic brain injury is neuroprotective. IEEE Trans Biomed Eng 62(10):2352–2357

    Google Scholar 

  • Hakimova H, Kim S, Chu K et al (2015) Ultrasound stimulation inhibits recurrent seizures and improves behavioral outcome in an experimental model of mesial temporal lobe epilepsy. Epilepsy Behav 49:26–32

    Article  PubMed  Google Scholar 

  • Hameroff S, Trakas M, Duffield C et al (2013) Transcranial Ultrasound (TUS) Effects on Mental States: A Pilot Study. Brain Stimulation 6(3): 409-415. https://doi.org/10.1016/j.brs.2012.05.002.

    Google Scholar 

  • Holland CK, Apfel RE (1990) Thresholds for transient cavitation produced by pulsed ultrasound in a controlled nuclei environment. J Acoust Soc Am 88(5):2059–2069

    Article  CAS  PubMed  Google Scholar 

  • Huang YS, Fan CH, Hsu N et al (2020) Sonogenetic modulation of cellular activities using an engineered auditory-sensing protein. Nano Lett 20(2):1089–1100

    Google Scholar 

  • Jin Y, Li Y, Ye Y et al (2020) Development of multi-layer lateral-mode ultrasound needle transducer for brain stimulation in mice. IEEE Trans Biomed Eng 67(7):1982–1988

    PubMed  Google Scholar 

  • Kim H, Chiu A, Lee SD et al (2014) Focused ultrasound-mediated non-invasive brain stimulation: Examination of sonication parameters. Brain Stimul 7(5):748–756

    Google Scholar 

  • Kim H, Park MY, Lee SD et al (2015) Suppression of EEG visual-evoked potentials in rats through neuromodulatory focused ultrasound. Neuroreport 26(4):211–215

    Article  PubMed  PubMed Central  Google Scholar 

  • Kim H, Kim S, Sim NS et al (2019) Miniature ultrasound ring array transducers for transcranial ultrasound neuromodulation of freely-moving small animals. Brain Stimul 12(2):251–255

    Article  PubMed  Google Scholar 

  • King RL, Brown JR, Newsome WT et al (2013) Effective parameters for ultrasound-induced in vivo neurostimulation. Ultrasound Med Biol 39(2):312–331

    Article  PubMed  Google Scholar 

  • King RL, Brown JR, Pauly KB (2014) Localization of ultrasound-induced in vivo neurostimulation in the mouse model. Ultrasound Med Biol 40(7):1512–1522

    Google Scholar 

  • Kubanek J, Shi J, Marsh J et al (2016) Ultrasound modulates ion channel currents. Sci Rep 6(1):24170

    Google Scholar 

  • Kubanek J, Shukla P, Das A et al (2018) Ultrasound elicits behavioral responses through mechanical effects on neurons and ion channels in a simple nervous system. J Neurosci 38(12):3081–3091

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kubanek J, Brown J, Ye P et al (2019) Transcranial ultrasound selectively biases decision-making in primates bioRxiv:486134. https://doi.org/10.1101/486134

  • Lee W, Kim H, Jung Y et al (2015) Image-guided transcranial focused ultrasound stimulates human primary somatosensory cortex. Sci Rep 5(1): 8743. https://doi.org/10.1038/srep08743

  • Lee SJ, Park KH (1999) Ultrasonic energy in endoscopic surgery. Yonsei Med J 40(6):545–549

    Article  CAS  PubMed  Google Scholar 

  • Legon W, Ai L, Bansal P (2018) Neuromodulation with single-element transcranial focused ultrasound in human thalamus. Hum Brain Mapp 39(5): 1995–2006. https://doi.org/10.1002/hbm.23981

  • Levenback BJ, Sehgal CM, Wood AKW (2012) Modeling of thermal effects in antivascular ultrasound therapy. J Acoust Soc Am 131(1):540–549

    Article  PubMed  PubMed Central  Google Scholar 

  • Li GF, Qiu WB, Zhang ZQ et al (2019) Noninvasive ultrasonic neuromodulation in freely moving mice. IEEE Trans Biomed Eng 66(1):217–224

    Google Scholar 

  • Lin Z, Meng L, Zou J et al (2020) Non-invasive ultrasonic neuromodulation of neuronal excitability for treatment of epilepsy. Theranostics 10(12):5514–5526. https://doi.org/10.7150/thno.40520

  • Lin Z, Zhou W, Huang X, et al (2018) On-chip ultrasound modulation of pyramidal neuronal activity in hippocampal slices. Advanced Biosystems 2(8): 1800041. https://doi.org/10.1002/adbi.201800041

  • McDannold N, Vykhodtseva N, Hynynen K (2008) Blood-brain barrier disruption induced by focused ultrasound and circulating preformed microbubbles appears to be characterized by the mechanical index. Ultrasound Med Biol 34(5):834–840

    Article  PubMed  PubMed Central  Google Scholar 

  • Meng Y, Hynynen K, Lipsman N (2021) Applications of focused ultrasound in the brain: from thermoablation to drug delivery. Nat Rev Neurol 17(1):7–22

    Article  PubMed  Google Scholar 

  • Miller DL (2007) Overview of experimental studies of biological effects of medical ultrasound caused by gas body activation and inertial cavitation. Prog Biophys Mol Biol 93(1–3):314–330

    Article  PubMed  Google Scholar 

  • Min BK, Bystritsky A, Jung KI et al (2011) Focused ultrasound-mediated suppression of chemically-induced acute epileptic EEG activity. BMC Neurosci 12:23

    Google Scholar 

  • Monti MM, Schnakers C, Korb AS et al (2016) Non-invasive ultrasonic thalamic stimulation in disorders of consciousness after severe brain injury: a first-in-man report. Brain Stimulation: Basic, Translational, and Clinical Research in Neuromodulation 9(6): 940–941. https://doi.org/10.1016/j.brs.2016.07.008

  • Mueller J, Legon W, Opitz A, Sato T F & Tyler W J (2014) Transcranial focused ultrasound modulates intrinsic and evoked EEG dynamics. Brain Stimul 7(6): 900–908. https://doi.org/10.1016/j.brs.2014.08.008

  • Qiu Z, Guo J, Kala S et al (2019) The mechanosensitive ion channel Piezo1 significantly mediates in vitro ultrasonic stimulation of neurons. Science 21:448–457

    Google Scholar 

  • Rabut C, Yoo S, Hurt RC et al (2020) Ultrasound technologies for imaging and modulating neural activity. Neuron 108(1):93–110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Riley N (1998) Acoustic streaming. Theor Comput Fluid Dyn 10(1):349–356

    Article  Google Scholar 

  • Sanguinetti JL, Hameroff S, Smith EE et al (2020) Transcranial Focused Ultrasound to the Right Prefrontal Cortex Improves Mood and Alters Functional Connectivity in Humans 14: 52. https://doi.org/10.3389/fnhum.2020.00052

  • Sassaroli, E., Vykhodtseva, N (2016) Acoustic neuromodulation from a basic science prospective. J Ther Ultrasound 4:17. https://doi.org/10.1186/s40349-016-0061-z

  • Shealy CN, Henneman E (1962) Reversible effects of ultrasound on spinal reflexes. Arch Neurol 6:374–386

    Article  CAS  PubMed  Google Scholar 

  • Smith NB, Temkin JM, Shapiro F et al (2001) Thermal effects of focused ultrasound energy on bone tissue. Ultrasound Med Biol 27(10):1427–1433

    Article  CAS  PubMed  Google Scholar 

  • Ter Haar GR (2001) High intensity focused ultrasound for the treatment of tumors. Echocardiography 18:317–322. https://doi.org/10.1046/j.1540-8175.2001.00317.x

  • Tufail Y, Matyushov A, Baldwin N et al (2010) Transcranial pulsed ultrasound stimulates intact brain circuits. Neuron 66(5):681–694

    Article  CAS  PubMed  Google Scholar 

  • Tufail Y, Yoshihiro A, Pati S et al (2011) Ultrasonic neuromodulation by brain stimulation with transcranial ultrasound. Nat Protoc 6(9): 1453–1470. https://doi.org/10.1038/nprot.2011.371

  • Tyler WJ (2011) Noninvasive neuromodulation with ultrasound? A continuum mechanics hypothesis. Neuroscientist 17(1):25–36

    Article  PubMed  Google Scholar 

  • Tyler WJ (2012) The mechanobiology of brain function. Nat Rev Neurosci 13(12):867–878

    Article  CAS  PubMed  Google Scholar 

  • Tyler WJ, Tufail Y, Finsterwald M et al (2008) Remote excitation of neuronal circuits using low-intensity, low-frequency ultrasound. PLoS One 3(10):e3511

    Article  PubMed  PubMed Central  Google Scholar 

  • van den Bijgaart RJE, Eikelenboom DC, Hoogenboom M et al (2017) Thermal and mechanical high-intensity focused ultrasound: perspectives on tumor ablation, immune effects and combination strategies. Cancer Immunol Immunother 66(2):247–258

    Article  PubMed  Google Scholar 

  • Verhagen L, Gallea C, Folloni D et al (2019) Offline impact of transcranial focused ultrasound on cortical activation in primates. eLife 8: e40541. https://doi.org/10.7554/eLife.40541

  • Warwick R, Pond J (1968) Trackless lesions in nervous tissues produced by high intensity focused ultrasound (high-frequency mechanical waves). J Anat 102(Pt 3):387–405

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wu F, Chen WZ, Bai J et al (2001) Pathological changes in human malignant carcinoma treated with high-intensity focused ultrasound. Ultrasound Med Biol 27(8):1099–1106

    Article  CAS  PubMed  Google Scholar 

  • Xia X, Fomenko A, Nankoo JF et al (2021) Time course of the effects of low-intensity transcranial ultrasound on the excitability of ipsilateral and contralateral human primary motor cortex. NeuroImage 243:118557

    Article  PubMed  Google Scholar 

  • Yang PF, Phipps MA, Newton AT et al (2018) Neuromodulation of sensory networks in monkey brain by focused ultrasound with MRI guidance and detection. Sci Rep 8(1):7993. https://doi.org/10.1038/s41598-018-26287-7

  • Ye J, Tang S, Meng L et al (2018) Ultrasonic control of neural activity through activation of the mechanosensitive channel MscL. Nano Lett 18(7):4148–4155. https://doi.org/10.1021/acs.nanolett.8b00935

  • Yoo SS, Bystritsky A, Lee JH et al (2011a) Focused ultrasound modulates region-specific brain activity. NeuroImage 56(3):1267–1275

    Article  PubMed  Google Scholar 

  • Yoo SS, Kim H, Min BK et al (2011b) Transcranial focused ultrasound to the thalamus alters anesthesia time in rats. Neuroreport 22(15):783–787

    Article  PubMed  PubMed Central  Google Scholar 

  • Yoo SS, Jung K, Zhang Y et al (2010) Non-invasive suppression of animal-model chronic epilepsy using image-guided focused ultrasound. Proc Int Soc Magn Reson Med 18:105–111

    Google Scholar 

  • Yuan Y, Yan JQ, Ma ZT et al (2016) Noninvasive focused ultrasound stimulation can modulate phase-amplitude coupling between neuronal oscillations in the rat hippocampus. Front Neurosci 10:348

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang DQ, Li HD, Sun JF et al (2018) Antidepressant-like effect of low-intensity transcranial ultrasound stimulation. IEEE Trans Biomed Eng 66(2):411–420

    Article  PubMed  Google Scholar 

  • Zhou W, Wang JJ, Wang KY et al (2017) Ultrasound neuro-modulation chip: activation of sensory neurons in Caenorhabditis elegans by surface acoustic waves. Lab Chip 17(10):1725–1731 https://doi.org/10.1039/c7lc00163k

  • Zhou H, Niu LL, Xia XX et al (2019) Wearable ultrasound improves motor function in an MPTP mouse model of Parkinson’s disease. IEEE Trans Biomed Eng 66(11):3006–3013

    Article  PubMed  Google Scholar 

  • Zhou H, Meng L, Xia XX et al (2021) Transcranial ultrasound stimulation suppresses neuroinflammation in a chronic mouse model of Parkinson’s disease. IEEE Trans Biomed Eng 68(11):3375–3387

    Article  PubMed  Google Scholar 

  • Zou J, Meng L, Lin Z, et al (2020) Ultrasound Neuromodulation inhibits seizures in acute epileptic monkeys. iScience 23(5):101066. https://doi.org/10.1016/j.isci.2020.101066

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lili Niu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zheng, H., Niu, L., Liu, C., Zhang, T. (2023). Transcranial Ultrasonic Neurostimulation. In: Wang, Y. (eds) Therapeutics of Neural Stimulation for Neurological Disorders. Springer, Singapore. https://doi.org/10.1007/978-981-99-4538-2_11

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-4538-2_11

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-4537-5

  • Online ISBN: 978-981-99-4538-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics