Skip to main content

Design and Analysis of T-Shaped Defect-Based Photonic Crystal Waveguide for Application of Optical Interconnect

  • Conference paper
  • First Online:
Micro and Nanoelectronics Devices, Circuits and Systems (MNDCS 2023)

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 1067))

  • 315 Accesses

Abstract

The present work addresses design and analysis of a T-shaped defect-based 2D photonic crystal (PhC) to realize optical interconnect application. The proposed structure is designed in OptiFDTD simulation platform, where the finite-difference time-domain (FDTD) is the backend computational algorithm. Electric field distribution along the T-shaped waveguide is studied. The photonic band gap is analysed using plane wave expansion method, where it is seen that the signal that falls within the band gap can propagate along the defect. The power at the output ports is evaluated. A very low nonlinear coefficient in the order of 10−6 is obtained, which infers that the designed structure has enough potential as an optical interconnect in the light wave circuit.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. E. Yablonovitch, Inhibited spontaneous emission in solid-state physics and electronics. Phys. Rev. Lett. 58(20), 2059–2062 (1987)

    Article  Google Scholar 

  2. S. John, Strong localization of photons in certain disordered dielectric superlattices. Phys. Rev. Lett. 58(23), 2486–2489 (1987)

    Article  Google Scholar 

  3. E. Yablonovitch, Photonic band-gap crystals. J. Phys.: Condens. Matter 5(16), 2443–2460 (1993). https://doi.org/10.1088/0953-8984/5/16/004

    Article  Google Scholar 

  4. X. Shi, Z. Zhao, Z. Han, Highly sensitive and selective gas sensing using the defect mode of a compact terahertz photonic crystal cavity. Sens. Actuators, B Chem. 274, 188–193 (2018)

    Article  Google Scholar 

  5. L. Hajshahvaladi, H. Kaatuzian, M. Danaie, Design and simulation of infrared a photonic crystal band pass filters for fiber optics communication. in 2017 Iranian Conference on Electrical Engineering (ICEE), 2017, pp. 527–531. https://doi.org/10.1109/IranianCEE.2017.7985095

  6. Z. Rashki, S.J. Seyyed Mahdavi Chabok, Novel design of optical channel drop filters based on two-dimensional photonic crystal ring resonators. Opt. Commun. 395, 231–235 (2017)

    Google Scholar 

  7. F. Bayat, S. Ahmadi-Kandjani, H. Tajalli, Designing real-time biosensors and chemical sensors based on defective 1-D photonic crystals. IEEE Photon. Technol. Lett. 28(17), 1843–1846 (2016). https://doi.org/10.1109/LPT.2016.2573852

  8. S. Dai, Q. Li, W. Li, Y. Zhang, M. Dou, R. Xu, T. Wang, X. Lu, F. Wang, J. Li, Advances in functional photonic crystal materials for the analysis of chemical hazards in food. Compr. Rev. Food Sci. Food Saf. 21(6), 4900–4920 (2022)

    Article  Google Scholar 

  9. K. Goswami, H. Mondal, M. Sen, Optimized design of 60° bend in optical waveguide for efficient power transfer. in Advances in Communication, Devices and Networking, 2020, pp. 47–52

    Google Scholar 

  10. S. Singh, K. Singh, Design of an integrated multi-arm power splitter using photonic crystal waveguide. Optik 145, 495–502 (2017)

    Article  Google Scholar 

  11. C.S. Mishra, Design and analysis of L shape photonic waveguide for realisation of power amplifier application. Opt. Mater. 127, 112298 (2022)

    Article  Google Scholar 

  12. P. Sarkar, A. Panda, G. Palai, Analysis of 90° bend photonic crystal waveguide: an application to optical interconnect. Indian J. Phys. 93(11), 1495–1500 (2019). https://doi.org/10.1007/s12648-019-01425-7

    Article  Google Scholar 

  13. Z. Wang, C. Zhao, S. Jin, Design of a bending-insensitive single-mode photonic crystal fiber. Opt. Fiber Technol. 19(3), 213–218 (2013). https://doi.org/10.1016/j.yofte.2013.01.004

    Article  Google Scholar 

  14. Z. Wang et al., Design of large-mode-area single-mode optical fiber with lowing bending loss for Raman distributed temperature sensor. Opt. Fiber Technol. 19(6), 671–676 (2013). https://doi.org/10.1016/j.yofte.2013.10.008

    Article  Google Scholar 

  15. H. Wang, M.-Y. Chen, Y.-F. Zhu, S.-Y. Li, P. Yin, X.-S. Wu, R.-H. Li, Z.-M. Cai, P.-P. Fu, H. Qin, J. Wei, Design and demonstration of single-mode operation in few-mode optical fiber with low-bending loss. Opt. Eng. 56(1), 016103 (2017)

    Article  Google Scholar 

  16. S. Boscolo, M. Midrio, T. Krauss, Y junctions in photonic crystal channel waveguides: high transmission and impedance matching. Opt. Lett. 27(12), 1001 (2002). https://doi.org/10.1364/ol.27.001001

    Article  Google Scholar 

  17. S. Fan, S. Johnson, J. Joannopoulos, C. Manolatou, H. Haus, Waveguide branches in photonic crystals. J. Opt. Soc. Am. B 18(2), 162 (2001). https://doi.org/10.1364/josab.18.000162

    Article  Google Scholar 

  18. S. Kabir, M. Khandokar, M. Khan, Design of triangular core LMA-PCF with low-bending loss and low non-linearity for laser application. Opt. Laser Technol. 81, 84–89 (2016). https://doi.org/10.1016/j.optlastec.2016.01.036

    Article  Google Scholar 

  19. M. Arif, M. Biddut, Enhancement of relative sensitivity of photonic crystal fiber with high birefringence and low confinement loss. Optik 131, 697–704 (2017). https://doi.org/10.1016/j.ijleo.2016.11.203

    Article  Google Scholar 

  20. https://www.batop.de/information/n_GaAs.html

  21. K. Yee, Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media. IEEE Trans. Antennas Propag. 14(3), 302–307 (1966). https://doi.org/10.1109/tap.1966.1138693

    Article  MATH  Google Scholar 

  22. A. Lavrinenko et al., Comprehensive FDTD modelling of photonic crystal waveguide components. Opt. Express 12(2), 234 (2004). https://doi.org/10.1364/opex.12.000234

    Article  Google Scholar 

  23. FDTD Basics, Optiwave, (2022). [Online]. Available: https://optiwave.com/optifdtd-manuals/fdtd-fdtd-basics/

  24. A. Aggarwal, R. Gupta, A. Saharia, M. Tiwari, Hexagonal spiral photonic crystal fiber. in 2021 International Conference in Advances in Power, Signal, and Information Technology (APSIT), 2021

    Google Scholar 

  25. M.S. Hossain, K. Neupane, M. Shihab Bin Hafiz, S.P. Majumder, Dispersion and nonlinear characteristics of a photonic crystal fiber (PCF) with defected core and various doping concentration. in 8th International Conference on Electrical and Computer Engineering, 2014, pp. 500–503. https://doi.org/10.1109/ICECE.2014.7026978

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Bhavana .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bhavana, A., Pukhrambam, P.D., Panda, A., Daher, M.G. (2024). Design and Analysis of T-Shaped Defect-Based Photonic Crystal Waveguide for Application of Optical Interconnect. In: Lenka, T.R., Saha, S.K., Fu, L. (eds) Micro and Nanoelectronics Devices, Circuits and Systems. MNDCS 2023. Lecture Notes in Electrical Engineering, vol 1067. Springer, Singapore. https://doi.org/10.1007/978-981-99-4495-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-4495-8_2

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-4494-1

  • Online ISBN: 978-981-99-4495-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics