Skip to main content

Delay Analysis of Different Stretchable Interconnect Structures

  • Chapter
  • First Online:
Interconnect Technologies for Integrated Circuits and Flexible Electronics
  • 348 Accesses

Abstract

Stretchable electronic systems are needed in realizing a wide range of applications, such as wearable healthcare monitoring, where stretching movements are present. Current electronics and sensors are rigid and non-stretchable. However, after integrating with stretchable interconnects, the overall system is able to withstand a certain degree of bending, stretching, and twisting. In this chapter, extraction of the parasitic parameters of a wire and an analytical model is developed based on the skin effect of stretchable interconnects. Analytical models are employed to estimate the delay of various stretchable interconnects and the results are found to be in good accuracy with the simulation results. Finally, the proposed model is employed for comparing the simulation results of circular, rectangular, triangular, and horseshoe stretchable interconnects over a wide frequency range up to 10 GHz.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Blau A, Murr A, Wolff S, Sernagor E, Medini P, Iurilli G, Ziegler C, Benfenati F (2011) Flexible, all-polymer microelectrode arrays for the capture of cardiac and neuronal signals. Biomaterials 32(7):1778–1786

    Article  Google Scholar 

  • Carlson A, Bowen AM, Huang Y, Nuzzo RG, Rogers JA (2012) Transfer printing techniques for materials assembly and micro/nanodevice fabrication. Adv Mater 24(39):5284–5318

    Article  Google Scholar 

  • Case JC, White EL, Kramer RK (2015) Soft material characterization for robotic applications. Soft Robot 2(2):80–87

    Article  Google Scholar 

  • Dang W (2018) Stretchable interconnects for smart integration of sensors in wearable and robotic applications

    Google Scholar 

  • Dong Z, Duan B, Boxing C, Zhen Y, Yintang (2017) Electromechanical modeling of stretchable interconnects. J Comput Electron., 16. https://doi.org/10.1007/s10825-016-0946-7

  • Gao Y, Ota H, Schaler EW, Chen K, Zhao A, Gao W, Fahad HM, Leng Y, Zheng A, Xiong F, Zhang, Tai L-C, Zhao P, Fearing RS, Javey A (2017) Wearable microfluidic diaphragm pressure sensor for health and tactile touch monitoring. Adv Mater 29(39):(1–8) 1701985

    Google Scholar 

  • Hess-Dunning AE, Tyler DJ, Zorman CA (2013) Stretchable thin-film metal structures on a stimuli-responsive polymer nanocomposite for mechanically-dynamic microsystems. Transducers 2013, Barcelona, SPAIN, pp 2229–2232

    Google Scholar 

  • Jeong SH, Zhang S, Hjort K, Hilborn J, Wu Z (2016) PDMS-based elastomer tuned soft, stretchable, and sticky for epidermal electronics. Adv Mater 28:5830–5836

    Article  Google Scholar 

  • Jinno H, Fukuda K, Xu X, Park S, Suzuki Y, Koizumi M, Yokota T, Osaka I, Takimiya K, Someya T (2017) Stretchable and waterproof elastomer-coated organic photovoltaics for washable electronic textile applications. Nat Energy 2(10):780–785

    Article  Google Scholar 

  • Johnston ID, McCluskey DK, Tan CKL, Tracey MC (2014) Mechanical characterization of bulk Sylgard 184 for microfluidics and microengineering. J Micromechanics Microeng 24(3): 0350117 (1–7)

    Google Scholar 

  • Khan S, Yogeswaran N, Taube W, Lorenzelli L, Dahiya R (2015) Flexible FETs using ultrathin Si microwires embedded in solution processed dielectric and metal layers. J Micromechan Microeng 25(12):125019

    Article  Google Scholar 

  • Lacour SP, Jones J, Wagner S, Li T, Suo Z (2005) Stretchable interconnects for elastic electronic surfaces. Proc IEEE 93(8):1459–1467

    Article  Google Scholar 

  • Li J, Duan B, Dong Z, Yang Y (2018) Analysis of delay from step response based on stretchable flexible interconnects. Sci China Inf Sci 61(10):1–3

    Article  Google Scholar 

  • Lipomi DJ, Lee JA, Vosgueritchian M, Tee BC-K, Bolander JA, Bao Z (2012) Electronic properties of transparent conductive films of PEDOT: PSS on stretchable substrates. Chem Mater 24(2):373–382

    Article  Google Scholar 

  • Plovie BB, Yang Y, Guillaume J, Dunphy S, Dhaenens K, Van Put S, Vervust T, Bossuyt F, Vanfleteren J (2017) Arbitrarily shaped 2.5D circuits using stretchable interconnects embedded in thermoplastic polymers. Adv Eng Mater 19(8):1700032 (1–8)

    Google Scholar 

  • Salvatore GA, Sülzle J, Valle FD, Cantarella G, Robotti F, Jokic P, Knobelspies S, Daus A, Büthe L, Petti L, Kirchgessner N, Hopf R, Magno M, Tröster G (2017) Biodegradable and highly deformable temperature sensors for the internet of things. Adv Funct Mater 27(35):1702390 (1–10)

    Google Scholar 

  • Sosin S (2011) Interconnect schemes for stretchable array-type microsystems

    Google Scholar 

  • Stoyanov H, Kollosche M, Risse S, Waché R, Kofod G (2013) Soft conductive elastomer materials for stretchable electronics and voltage controlled artificial muscles. Adv Mater 25(4):578–583

    Article  Google Scholar 

  • Tybrandt K, Khodagholy D, Dielacher B, Stauffer F, Renz AF, Buzsáki G, Vörös J (2018) High-density stretchable electrode grids for chronic neural recording. Adv Mater 30(15):1706520 (1–7)

    Google Scholar 

  • Vroman I, Tighzert L (2009) Biodegradable polymers. Materials (basel) 2(2):307–344

    Article  Google Scholar 

  • Wang S, Xu J, Wang W, Wang G-JN, Rastak R, Molina-Lopez F, Chung JW, Niu S, Feig VR, Lopez J, Lei T, Kwon S-K, Kim Y, Foudeh AM, Ehrlich A, Gasperini A, Yun Y, Murmann B, Tok JB-H, Bao Z (2018) Skin electronics from scalable fabrication of an intrinsically stretchable transistor array. Nature 555:83–88

    Google Scholar 

  • Zhao Y, Kim A, Wan G, Tee BCK (2019) Design and application of stretchable and self-healable conductors for soft electronics. Nano Convergence 6(1):1–22

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kavicharan Mummaneni or Yash Agrawal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mummaneni, K., Kumar, V., Malvika, Agrawal, Y. (2024). Delay Analysis of Different Stretchable Interconnect Structures. In: Agrawal, Y., Mummaneni, K., Sathyakam, P.U. (eds) Interconnect Technologies for Integrated Circuits and Flexible Electronics. Springer Tracts in Electrical and Electronics Engineering. Springer, Singapore. https://doi.org/10.1007/978-981-99-4476-7_14

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-4476-7_14

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-4475-0

  • Online ISBN: 978-981-99-4476-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics