Skip to main content
  • 479 Accesses

Abstract

Electrochemical methods to produce hydrogen require electrical energy to facilitate the reaction. Green hydrogen can be produced electrochemically if the electrical energy is obtained from processes that benefit the environment, such as wind solar tidal energy, etc. Several electrochemical methods can be used to generate hydrogen, of which water electrolysis is the best known. Other electrochemical processes also have the potential to produce hydrogen, however, an important aspect of the production of green hydrogen from electrical energy is the clean technology of using electrical energy to produce hydrogen from low-value feedstocks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. M. Schalenbach, A.R. Zeradjanin, O. Kasian, S. Cherevko, K.J. Mayrhofer, Inter. J. Electro. Sci. 13, 1173–1226 (2018)

    Article  CAS  Google Scholar 

  2. M. Balat, Int. J. Hydrogen Energy 33, 4013–4029 (2008)

    Article  CAS  Google Scholar 

  3. A. Markandya, P. Wilkinson, The Lancet 370, 979–990 (2007)

    Article  Google Scholar 

  4. P. Trinke, B. Bensmann, R. Hanke-Rauschenbach, Int. J. Hydrogen Energy 42, 14355–14366 (2017)

    Google Scholar 

  5. V.N. Kuleshov, N.V. Kuleshov, S.A. Grigoriev, E.Y. Udris, P. Millet, A.S. Grigoriev, Int. J. Hydrogen Energy 41, 36–45 (2016)

    Article  CAS  Google Scholar 

  6. M. Schalenbach, O. Kasian, K.J.J. Mayrhofer, Int. J. Hydrogen Energy 43, 11932–11938 (2018)

    Article  CAS  Google Scholar 

  7. N.V. Kuleshov, V.N. Kuleshov, S.A. Dovbysh, S.A. Grigoriev, S.V. Kurochkin, P. Millet, Int. J. Hydrogen Energy 44, 29441–29449 (2019)

    Article  CAS  Google Scholar 

  8. Z.Q. Liu, C. Chen, X.T. Wang, J.H. Zhong, J.L. Liu, G. Waterhouse, Angew. Chem. Int. Ed. 60, 22043–22050 (2021)

    Article  Google Scholar 

  9. I. Vincent, D. Bessarabov, Renew. Sust. Energy Rev. 81, 1690–1704 (2018)

    Article  CAS  Google Scholar 

  10. Ø. Ulleberg, T. Nakken, A. Eté, Int. J. Hydrogen Energy 35, 1841–1852 (2010)

    Article  CAS  Google Scholar 

  11. H. Lee, B. Choe, B. Lee, J. Gu, H.-S. Cho, W. Won, H. Lim, J. Clean. Prod. 377, 134210 (2022)

    Article  CAS  Google Scholar 

  12. L.M. Pastore, G. Lo Basso, M. Sforzini, L. de Santoli, Renew. Sust. Energy Rev. 166, 112685 (2022)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shengjie Peng .

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Peng, S. (2023). Alkaline Water Electrolysis. In: Electrochemical Hydrogen Production from Water Splitting. Springer, Singapore. https://doi.org/10.1007/978-981-99-4468-2_3

Download citation

Publish with us

Policies and ethics