Skip to main content

Visual SLAM for Texture-Less Environment

  • Chapter
  • First Online:
Autonomous Driving Perception

Abstract

Recent researches on vision-based self-localization have catalyzed versatile and reliable real-time Visual Simultaneous Localization and Mapping (VSLAM) systems. However, retrieving ground truth, estimating calibration parameters and annotating useful labels all require cumbersome human labor. Moreover, there are lots of object instances in the environments while traditional mapping modules can only estimate 3D information of isolated sparse or semi-dense feature points. To meet the gap between the above requirements, we present a VSLAM method based on a synthetic dataset which can effectively utilize texture-less object instances. We also propose several new evaluation criteria that can fully take advantage of ground truth and annotations from synthetic datasets. The proposed Visual SLAM method includes newly designed feature extraction, matching, localization and mapping modules, which jointly use object features and point features to estimate camera 6-Degrees Of Freedom (6-DOF) poses and do richer map construction. Experiments are conducted using the proposed datasets and criteria with several state-of-the-art VSLAM methods to demonstrate the functionality of our datasets. Owing to the object feature fusion in the co-visibility graph, it can conducts scale aware bundle adjustments to reduce accumulated errors. The advantages of proposed Visual SLAM method are demonstrated through experiments conducted both on synthetic datasets and real-world datasets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Many works that claim themselves as “Visual Odometry” possess many features similar to SLAM system; therefore we refer both VO and Visual SLAM as “VSLAM” in the following paper.

  2. 2.

    https://www.unrealengine.com/.

  3. 3.

    https://unity3d.com/.

  4. 4.

    https://rendering.ru/madcar.html.

  5. 5.

    https://www.autodesk.com/products/3ds-max/overview.

  6. 6.

    https://www.chaosgroup.com/vray/3ds-max.

References

  1. Engel J, Koltun V, Cremers D (2018) Direct sparse odometry. IEEE Trans Pattern Anal Mach Intell 40(3):611–625

    Article  Google Scholar 

  2. Forster C, Zhang Z, Gassner M, Werlberger M, Scaramuzza D (2017) Svo: semidirect visual odometry for monocular and multicamera systems. IEEE Trans Rob 33(2):249–265

    Article  Google Scholar 

  3. Mur-Artal R, Tardós JD (2017) Orb-slam2: an open-source slam system for monocular, stereo, and rgb-d cameras. IEEE Trans Rob 33(5):1255–1262

    Article  Google Scholar 

  4. Engel J, Schöps T, Cremers D (2014) Lsd-slam: large-scale direct monocular slam. In: European conference on computer vision. Springer, pp 834–849

    Google Scholar 

  5. Jose Tarrio J, Pedre S (2015) Realtime edge-based visual odometry for a monocular camera. In: Proceedings of the IEEE international conference on computer vision. IEEE, pp 702–710

    Google Scholar 

  6. Yang S, Scherer S (2017) Direct monocular odometry using points and lines. In: 2017 IEEE international conference on robotics and automation (ICRA). IEEE, pp 3871–3877

    Google Scholar 

  7. Wang X, Dong W, Zhou M, Li R, Zha H (2016) Edge enhanced direct visual odometry. In: BMVC

    Google Scholar 

  8. Gomez-Ojeda R, Briales J, Gonzalez-Jimenez J (2016) Pl-svo: Semi-direct monocular visual odometry by combining points and line segments. In: 2016 IEEE/RSJ international conference on intelligent robots and systems (IROS). IEEE, pp 4211–4216

    Google Scholar 

  9. Maity S, Saha A, Bhowmick B (2017) Edge slam: edge points based monocular visual slam. In: Proceedings of the IEEE international conference on computer vision, pp 2408–2417

    Google Scholar 

  10. Gomez-Ojeda R, Zuñiga-Noël D, Moreno F-A, Scaramuzza D, Gonzalez-Jimenez J (2017) Pl-slam: a stereo slam system through the combination of points and line segments. arXiv preprint arXiv:1705.09479

  11. Zhou H, Zou D, Pei L, Ying R, Liu P, Yu W (2015) Structslam: visual slam with building structure lines. IEEE Trans Veh Technol 64(4):1364–1375

    Article  Google Scholar 

  12. Li H, Yao J, Bazin J-C, Lu X, Xing Y, Liu K (2018) A monocular slam system leveraging structural regularity in manhattan world. In: 2018 IEEE international conference on robotics and automation (ICRA). IEEE, pp 2518–2525

    Google Scholar 

  13. Ma L, Kerl C, Stückler J, Cremers D (2016) Cpa-slam: consistent plane-model alignment for direct rgb-d slam. In: 2016 IEEE international conference on robotics and automation (ICRA). IEEE, pp 1285–1291

    Google Scholar 

  14. Hsiao M, Westman E, Zhang G, Kaess M (2017) Keyframe-based dense planar slam. In: 2017 IEEE international conference on robotics and automation (ICRA). IEEE, pp 5110–5117

    Google Scholar 

  15. Salas-Moreno RF, Glocken B, Kelly PH, Davison AJ (2014) Dense planar slam. In: IEEE international symposium on mixed and augmented reality (ISMAR). IEEE 2014:157–164

    Google Scholar 

  16. Hsiao M, Westman E, Kaess M (2018) Dense planar-inertial slam with structural constraints. In: 2018 IEEE international conference on robotics and automation (ICRA). IEEE, pp 6521–6528

    Google Scholar 

  17. Liwicki S, Zach C, Miksik O, Torr PH (2016) Coarse-to-fine planar regularization for dense monocular depth estimation. In: European conference on computer vision. Springer, pp 458–474

    Google Scholar 

  18. Nicholson L, Milford M, Sünderhauf N (2019) Quadricslam: dual quadrics from object detections as landmarks in object-oriented slam. IEEE Robot Autom Lett 4(1):1–8

    Article  Google Scholar 

  19. Jablonsky N, Milford M, Sünderhauf N (2018) An orientation factor for object-oriented slam. arXiv preprint arXiv:1809.06977

  20. McCormac J, Clark R, Bloesch M, Davison A, Leutenegger S (2018) Fusion++: volumetric object-level slam. In: 2018 international conference on 3D vision (3DV). IEEE, pp 32–41

    Google Scholar 

  21. Salas-Moreno RF, Newcombe RA, Strasdat H, Kelly PH, Davison AJ (2013) Slam++: simultaneous localisation and mapping at the level of objects. Proceedings of the IEEE conference on computer vision and pattern recognition 2013:1352–1359

    Google Scholar 

  22. Fei X, Soatto S (2018) Visual-inertial object detection and mapping. In: Proceedings of the European conference on computer vision (ECCV), pp 301–317

    Google Scholar 

  23. Hosseinzadeh M, Li K, Latif Y, Reid I (2018) Real-time monocular object-model aware sparse slam. arXiv preprint arXiv:1809.09149

  24. Hosseinzadeh M, Latif Y, Pham T, Suenderhauf N, Reid I (2018) Towards semantic slam: points, planes and objects. arXiv preprint arXiv:1804.09111

  25. Yang S, Scherer S (2018) Cubeslam: monocular 3d object detection and slam without prior models. arXiv preprint arXiv:1806.00557

  26. Li R, Wang S, Long Z, Gu D (2018) Undeepvo: monocular visual odometry through unsupervised deep learning. In: 2018 IEEE international conference on robotics and automation (ICRA). IEEE, pp 7286–7291

    Google Scholar 

  27. Pumarola A, Vakhitov A, Agudo A, Sanfeliu A, Moreno-Noguer F (2017) Pl-slam: real-time monocular visual slam with points and lines. In: 2017 IEEE international conference on robotics and automation (ICRA). IEEE, pp 4503–4508

    Google Scholar 

  28. Qin T, Li P, Shen S (2018) Vins-mono: a robust and versatile monocular visual-inertial state estimator. IEEE Trans Rob 34(4):1004–1020

    Article  Google Scholar 

  29. Zhang J, Singh S (2018) Laser-visual-inertial odometry and mapping with high robustness and low drift. Journal of Field Robotics 35(8):1242–1264

    Article  Google Scholar 

  30. Zhang J, Kaess M, Singh S (2017) A real-time method for depth enhanced visual odometry. Auton Robot 41(1):31–43

    Article  Google Scholar 

  31. Li S-P, Zhang T, Gao X, Wang D, Xian Y (2019) Semi-direct monocular visual and visual-inertial slam with loop closure detection. Robot Auton Syst 112:201–210

    Article  Google Scholar 

  32. López A, Villalonga G, Sellart L, Ros G, Vázquez D, Xu J, Marín J, Mozafari A (2017) Training my car to see using virtual worlds. Image Vis Comput 68:08

    Article  Google Scholar 

  33. Schubert D, Goll T, Demmel N, Usenko V, Stückler J, Cremers D (2018) The tum vi benchmark for evaluating visual-inertial odometry. arXiv preprint arXiv:1804.06120

  34. Carlevaris-Bianco N, Ushani AK, Eustice RM (2016) University of michigan north campus long-term vision and lidar dataset. Int J Robot Res 35(9):1023–1035

    Article  Google Scholar 

  35. Miller M, Chung S-J, Hutchinson S (2018) The visual-inertial canoe dataset. Int J Robot Res 37(1):13–20

    Article  Google Scholar 

  36. Engel J, Usenko V, Cremers D (2016) A photometrically calibrated benchmark for monocular visual odometry. arXiv preprint arXiv:1607.02555

  37. Chen C, Zhao P, Lu CX, Wang W, Markham A, Trigoni N (2018) Oxiod: The dataset for deep inertial odometry. arXiv preprint arXiv:1809.07491

  38. Pfrommer B, Sanket N, Daniilidis K, Cleveland J (2017) Penncosyvio: A challenging visual inertial odometry benchmark. In: 2017 IEEE international conference on robotics and automation (ICRA). IEEE, pp 3847–3854

    Google Scholar 

  39. Blanco-Claraco J-L, Moreno-Dueñas F, González-Jiménez J (2014) The málaga urban dataset: High-rate stereo and lidar in a realistic urban scenario. Int J Robot Res 33(2):207–214

    Article  Google Scholar 

  40. Maddern W, Pascoe G, Linegar C, Newman P (2017) 1 year, 1000 km: the oxford robotcar dataset. Int J Robot Res 36(1):3–15

    Article  Google Scholar 

  41. Cortés S, Solin A, Rahtu E, Kannala J (2018) Advio: an authentic dataset for visual-inertial odometry. In: Proceedings of the European conference on computer vision (ECCV), pp 419–434

    Google Scholar 

  42. Geiger A, Lenz P, Stiller C, Urtasun R (2013) Vision meets robotics: the kitti dataset. Int J Robot Res 32(11):1231–1237

    Article  Google Scholar 

  43. Burri M, Nikolic J, Gohl P, Schneider T, Rehder J, Omari S, Achtelik MW, Siegwart R (2016) The euroc micro aerial vehicle datasets. Int J Robot Res 35(10):1157–1163

    Article  Google Scholar 

  44. Li W, Saeedi S, McCormac J, Clark R, Tzoumanikas D, Ye Q, Huang Y, Tang R, Leutenegger S (2018) Interiornet: mega-scale multi-sensor photo-realistic indoor scenes dataset. In: British machine vision conference (BMVC)

    Google Scholar 

  45. Ros G, Sellart L, Materzynska J, Vazquez D, Lopez AM (2016) The synthia dataset: a large collection of synthetic images for semantic segmentation of urban scenes. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 3234–3243

    Google Scholar 

  46. Li X, Wang K, Tian Y, Yan L, Deng F, Wang F-Y (2018) The paralleleye dataset: a large collection of virtual images for traffic vision research. IEEE Trans Intell Transp Syst 99:1–13

    Google Scholar 

  47. Shah S, Dey D, Lovett C, Kapoor A (2018) Airsim: high-fidelity visual and physical simulation for autonomous vehicles. In: Field and service robotics. Springer, pp 621–635

    Google Scholar 

  48. Qiu W, Zhong F, Zhang Y, Qiao S, Xiao Z, Kim TS, Wang Y (2017) Unrealcv: virtual worlds for computer vision. In: Proceedings of the 2017 ACM on multimedia conference. ACM, pp 1221–1224

    Google Scholar 

  49. Handa A, Whelan T, McDonald J, Davison AJ (2014) A benchmark for rgb-d visual odometry, 3d reconstruction and slam. In: IEEE international conference on robotics and automation (ICRA). IEEE, 1524–1531

    Google Scholar 

  50. Maye J, Furgale P, Siegwart R (2013) Self-supervised calibration for robotic systems. In: 2013 IEEE intelligent vehicles symposium (IV). IEEE, pp 473–480

    Google Scholar 

  51. Murphy KP (2012) Machine learning: a probabilistic perspective. MIT Press

    Google Scholar 

  52. Muñoz E, Konishi Y, Murino V, Del Bue A (2016) Fast 6d pose estimation for texture-less objects from a single rgb image. In: 2016 IEEE international conference on robotics and automation (ICRA). IEEE, pp 5623–5630

    Google Scholar 

  53. Imperoli M, Pretto A (2015) D2CO: fast and robust registration of 3d textureless objects using the directional chamfer distance. In: International conference on computer vision systems. Springer, pp 316–328

    Google Scholar 

  54. Sturm J, Engelhard N, Endres F, Burgard W, Cremers D (2012) A benchmark for the evaluation of rgb-d slam systems. In: 2012 IEEE/RSJ international conference on intelligent robots and systems (IROS). IEEE, pp 573–580

    Google Scholar 

  55. Bescós B, Fácil JM, Civera J, Neira J (2018) Dynslam: tracking, mapping and inpainting in dynamic scenes. arXiv preprint arXiv:1806.05620

  56. Zhou H, Ummenhofer B, Brox T (2018) Deeptam: deep tracking and mapping. In: European conference on computer vision (ECCV)

    Google Scholar 

  57. Kar A, Prakash A, Liu M-Y, Cameracci E, Yuan J, Rusiniak M, Acuna D, Torralba A, Fidler S (2019) Meta-sim: learning to generate synthetic datasets. arXiv preprint arXiv:1904.11621

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sixiong Xu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dong, Y., Liu, Y., Xu, S. (2023). Visual SLAM for Texture-Less Environment. In: Fan, R., Guo, S., Bocus, M.J. (eds) Autonomous Driving Perception. Advances in Computer Vision and Pattern Recognition. Springer, Singapore. https://doi.org/10.1007/978-981-99-4287-9_8

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-4287-9_8

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-4286-2

  • Online ISBN: 978-981-99-4287-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics