Skip to main content

Stereo Matching: Fundamentals, State-of-the-Art, and Existing Challenges

  • Chapter
  • First Online:
Autonomous Driving Perception

Abstract

Stereo matching is the process of generating dense correspondences in stereo images in order to create a disparity map for depth perception. Stereo matching is different from flow estimation task due to stereo rectification, which ensures that correspondences are always co-linear in a pair of stereo images. Stereo vision has become increasingly popular in mobile devices, such as autonomous cars and unmanned aerial vehicles, thanks to recent advances in full-feature embedded microcomputers. However, due to limited computing resources, there is a growing need for stereo matching algorithms that strike a balance between disparity estimation accuracy and efficiency. Challenges in this field include the lack of disparity ground truth, domain adaptation, and intractable areas such as occlusions. This chapter covers the fundamentals of stereopsis, including the perspective camera model and epipolar geometry, and reviews the most advanced stereo matching algorithms. It also explores disparity confidence measures, disparity estimation evaluation metrics, and publicly available datasets and benchmarks, before summarizing the outstanding challenges in this field.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zhou K et al (2020) Review of stereo matching algorithms based on deep learning. Comput Intell Neurosci 2020

    Google Scholar 

  2. Fan R et al (2022) Learning collision-free space detection from stereo images: homography matrix brings better data augmentation. IEEE/ASME Trans Mechatron 27(1):225–233

    Article  Google Scholar 

  3. Wang H et al (2022) UnDAF: a general unsupervised domain adaptation framework for disparity or optical flow estimation. In: 2022 international conference on robotics and automation (ICRA). IEEE, pp 01–07

    Google Scholar 

  4. Ozgunalp U et al (2017) Multiple lane detection algorithm based on novel dense vanishing point estimation. IEEE Trans Intell Transp Syst 18(3):621–632

    Article  Google Scholar 

  5. Duan R et al (2022) Stereo orientation prior for uav robust and accurate visual odometry. IEEE/ASME Trans Mechatron 27(5):3440–3450

    Article  Google Scholar 

  6. Fan R et al (2020) Pothole detection based on disparity transformation and road surface modeling. IEEE Trans Image Process 29:897–908

    Article  MathSciNet  MATH  Google Scholar 

  7. Ma N et al (2022) Computer vision for road imaging and pothole detection: a state-of-the-art review of systems and algorithms. Transp Safety Environ 4(4):tdac026

    Google Scholar 

  8. Fan R et al (2021) Graph attention layer evolves semantic segmentation for road pothole detection: a benchmark and algorithms. IEEE Trans Image Process 30:8144–8154

    Article  Google Scholar 

  9. Fan R, Liu M (2020) Road damage detection based on unsupervised disparity map segmentation. IEEE Trans Intell Transp Syst 21(11):4906–4911

    Article  Google Scholar 

  10. Sicen G et al (2023) Road environment perception for safe and comfortable driving. Springer submitted for publication

    Google Scholar 

  11. Wang H et al (2022) Dynamic fusion module evolves drivable area and road anomaly detection: a benchmark and algorithms. IEEE Trans Cybern 52(10):10 750–10 760

    Google Scholar 

  12. Fan R et al (2020) SNE-RoadSeg: incorporating surface normal information into semantic segmentation for accurate freespace detection. In: Computer vision-ECCV (2020) 16th European conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part XXX 16. Springer, pp 340–356

    Google Scholar 

  13. Shean DE et al (2016) An automated, open-source pipeline for mass production of digital elevation models (DEMs) from very-high-resolution commercial stereo satellite imagery. ISPRS J Photogramm Remote Sens 116:101–117

    Article  Google Scholar 

  14. Menze M et al (2015) Object scene flow for autonomous vehicles. In: Proceedings of the IEEE conference on computer vision and pattern recognition (CVPR), pp 3061–3070

    Google Scholar 

  15. Scharstein D et al (2014) High-resolution stereo datasets with subpixel-accurate ground truth. In: German conference on pattern recognition (GVPR). Springer, pp 31–42

    Google Scholar 

  16. Schops T et al (2017) A multi-view stereo benchmark with high-resolution images and multi-camera videos. In: Proceedings of the IEEE conference on computer vision and pattern recognition (CVPR), pp 3260–3269

    Google Scholar 

  17. Mayer N et al (2016) A large dataset to train convolutional networks for disparity, optical flow, and scene flow estimation. In: Proceedings of the IEEE conference on computer vision and pattern recognition (CVPR), pp 4040–4048

    Google Scholar 

  18. Hamid MS et al (2022) Stereo matching algorithm based on deep learning: a survey. J King Saud Univ-Comput Inf Sci 34(5):1663–1673

    Google Scholar 

  19. Bendig K et al (2022) Self-superflow: self-supervised scene flow prediction in stereo sequences. In: Proceedings of the IEEE international conference on image processing (ICIP). IEEE, pp 481–485

    Google Scholar 

  20. Lee M-J et al (2022) Refinement of inverse depth plane in textureless and occluded regions in a multiview stereo matching scheme. J Sens 2022

    Google Scholar 

  21. Gidaris S et al (2018) Unsupervised representation learning by predicting image rotations. arXiv:1803.07728

  22. Trucco E et al (1998) Introductory techniques for 3-D computer vision, vol 201 . Prentice Hall Englewood Cliffs

    Google Scholar 

  23. Fan R et al (2023) Computer stereo vision for autonomous driving: theory and algorithms. In: Recent advances in computer vision applications using parallel processing. Springer, pp 41–70

    Google Scholar 

  24. Loop C et al (1999) Computing rectifying homographies for stereo vision. In: Proceedings of IEEE computer society conference on computer vision and pattern recognition (CVPR), vol 1. IEEE, pp 125–131

    Google Scholar 

  25. Tippetts B et al (2016) Review of stereo vision algorithms and their suitability for resource-limited systems. J Real-Time Image Proc 11(1):5–25

    Article  Google Scholar 

  26. Ding J et al (2021) High-accuracy recognition and localization of moving targets in an indoor environment using binocular stereo vision. ISPRS Int J Geo Inf 10(4):234

    Article  Google Scholar 

  27. Fan R et al (2018) Road surface 3D reconstruction based on dense subpixel disparity map estimation. IEEE Trans Image Process 27(6):3025–3035

    Article  MathSciNet  MATH  Google Scholar 

  28. Luo W et al (2016) Efficient deep learning for stereo matching. In: Proceedings of the IEEE conference on computer vision and pattern recognition (CVPR), pp 5695–5703

    Google Scholar 

  29. Hamzah RA et al (2016) Literature survey on stereo vision disparity map algorithms. J Sens 2016

    Google Scholar 

  30. Yamaguchi K et al (2012) Continuous markov random fields for robust stereo estimation. In: European conference on computer vision (ECCV). Springer, pp 45–58

    Google Scholar 

  31. Boykov Y et al (2001) Fast approximate energy minimization via graph cuts. IEEE Trans Pattern Anal Mach Intell 23(11):1222–1239

    Article  Google Scholar 

  32. Brown MZ et al (2003) Advances in computational stereo. IEEE Trans Pattern Anal Mach Intell 25(8):993–1008

    Article  Google Scholar 

  33. Hirschmuller H (2007) Stereo processing by semiglobal matching and mutual information. IEEE Trans Pattern Anal Mach Intell 30(2):328–341

    Article  Google Scholar 

  34. Seki A et al (2017) SGM-Nets: semi-global matching with neural networks. In: Proceedings of the IEEE conference on computer vision and pattern recognition (CVPR), pp 231–240

    Google Scholar 

  35. Spangenberg R et al (2013) Weighted semi-global matching and center-symmetric census transform for robust driver assistance. In: International conference on computer analysis of images and patterns (CAIP). Springer, pp 34–41

    Google Scholar 

  36. Žbontar J et al (2016) Stereo matching by training a convolutional neural network to compare image patches. J Mach Learn Res 17(1):2287–2318

    MathSciNet  MATH  Google Scholar 

  37. Hirschmuller H et al (2008) Evaluation of stereo matching costs on images with radiometric differences. IEEE Trans Pattern Anal Mach Intell 31(9):1582–1599

    Article  Google Scholar 

  38. Scharstein D et al (2003) High-accuracy stereo depth maps using structured light. In: Proceedings of the IEEE computer society conference on computer vision and pattern recognition (CVPR), vol 1. IEEE, pp 195–202

    Google Scholar 

  39. Yang Q et al (2008) Stereo matching with color-weighted correlation, hierarchical belief propagation, and occlusion handling. IEEE Trans Pattern Anal Mach Intell 31(3):492–504

    Article  Google Scholar 

  40. Fan R et al (2019) Real-time dense stereo embedded in a UAV for road inspection. In: IEEE/CVF conference on computer vision and pattern recognition workshops (CVPRW), pp 535–543

    Google Scholar 

  41. Mattoccia S (2011) Stereo vision: algorithms and applications, vol 22. University of Bologna

    Google Scholar 

  42. Scharstein D et al (2002) A taxonomy and evaluation of dense two-frame stereo correspondence algorithms. Int J Comput Vision 47(1):7–42

    Article  MathSciNet  MATH  Google Scholar 

  43. Zbontar J et al (2015) Computing the stereo matching cost with a convolutional neural network. In: Proceedings of the IEEE conference on computer vision and pattern recognition (CVPR), pp 1592–1599

    Google Scholar 

  44. Chang J-R et al (2018) Pyramid stereo matching network. In: Proceedings of the IEEE conference on computer vision and pattern recognition (CVPR), pp 5410–5418

    Google Scholar 

  45. Wang H et al (2021) PVStereo: pyramid voting module for end-to-end self-supervised stereo matching. IEEE Robot Autom Lett 6(3):4353–4360

    Article  Google Scholar 

  46. Zhong Y et al (2017) Self-supervised learning for stereo matching with self-improving ability. arXiv:1709.00930

  47. Wang H et al (2021) Co-teaching: an ark to unsupervised stereo matching. In: Proceedings of the IEEE international conference on image processing (ICIP). IEEE, pp 3328–3332

    Google Scholar 

  48. Zhang F et al (2019) GA-Net: guided aggregation net for end-to-end stereo matching. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp 185–194

    Google Scholar 

  49. Kendall A et al (2017) End-to-end learning of geometry and context for deep stereo regression. In: Proceedings of the IEEE international conference on computer vision (ICCV), pp 66–75

    Google Scholar 

  50. Guo X et al (2019) Group-wise correlation stereo network. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition (CVPR), pp 3273–3282

    Google Scholar 

  51. Cheng X et al (2020) Hierarchical neural architecture search for deep stereo matching. Adv Neural Inf Process Syst 33:22 158–22 169

    Google Scholar 

  52. Xu H et al (2020) AANet: adaptive aggregation network for efficient stereo matching. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition (CVPR), pp 1959–1968

    Google Scholar 

  53. Teed Z et al (2020) RAFT: recurrent all-pairs field transforms for optical flow. In: European conference on computer vision (ECCV). Springer, pp 402–419

    Google Scholar 

  54. Lipson L et al (2021) RAFT-stereo: multilevel recurrent field transforms for stereo matching. In: Proceedings of the IEEE international conference on 3D vision (3DV). IEEE, pp 218–227

    Google Scholar 

  55. Li J et al (2022) Practical stereo matching via cascaded recurrent network with adaptive correlation. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition (CVPR), pp 16 263–16 272

    Google Scholar 

  56. Zhu X et al (2019) Deformable ConvNets V2: more deformable, better results. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition (CVPR), pp 9308–9316

    Google Scholar 

  57. Wang Y et al (2019) Anytime stereo image depth estimation on mobile devices. In: Proceedings of the IEEE international conference on robotics and automation (ICRA). IEEE, pp 5893–5900

    Google Scholar 

  58. Yee K et al (2020) Fast deep stereo with 2D convolutional processing of cost signatures. In: Proceedings of the IEEE/CVF winter conference on applications of computer vision (WACV), pp 183–191

    Google Scholar 

  59. Tankovich V et al (2021) HitNet: hierarchical iterative tile refinement network for real-time stereo matching. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition (CVPR), pp 14 362–14 372

    Google Scholar 

  60. Chen S et al (2023) Feature enhancement network for stereo matching. Image Vis Comput 131:104614

    Article  Google Scholar 

  61. Wang Z et al (2004) Image quality assessment: from error visibility to structural similarity. IEEE Trans Image Process 13(4):600–612

    Article  Google Scholar 

  62. Zhou C et al (2017) Unsupervised learning of stereo matching. In: Proceedings of the IEEE international conference on computer vision (ICCV), pp 1567–1575

    Google Scholar 

  63. Li A et al (2018) Occlusion aware stereo matching via cooperative unsupervised learning. In: Asian conference on computer vision (ACCV). Springer, pp 197–213

    Google Scholar 

  64. Joung S et al (2019) Unsupervised stereo matching using confidential correspondence consistency. IEEE Trans Intell Transp Syst 21(5):2190–2203

    Article  Google Scholar 

  65. Liu P et al (2020) Flow2Stereo: effective self-supervised learning of optical flow and stereo matching. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition (CVPR), pp 6648–6657

    Google Scholar 

  66. Liu L et al (2020) Learning by analogy: reliable supervision from transformations for unsupervised optical flow estimation. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition (CVPR), pp 6489–6498

    Google Scholar 

  67. Khamis S et al (2018) StereoNet: guided hierarchical refinement for real-time edge-aware depth prediction. In: European conference on computer vision (ECCV). Springer, pp 573–590

    Google Scholar 

  68. Fan X et al (2022) Occlusion-aware self-supervised stereo matching with confidence guided raw disparity fusion. In: Proceedings of the conference on robots and vision (CRV). IEEE, pp 132–139

    Google Scholar 

  69. Poggi M et al (2021) On the confidence of stereo matching in a deep-learning era: a quantitative evaluation. arXiv:2101.00431

  70. Egnal G et al (2004) A stereo confidence metric using single view imagery with comparison to five alternative approaches. Image Vis Comput 22(12):943–957

    Article  Google Scholar 

  71. Haeusler R et al (2013) Ensemble learning for confidence measures in stereo vision. In: Proceedings of the IEEE conference on computer vision and pattern recognition (CVPR), pp 305–312

    Google Scholar 

  72. Matthies L (1992) Stereo vision for planetary rovers: stochastic modeling to near real-time implementation. Int J Comput Vision 8(1):71–91

    Article  MathSciNet  Google Scholar 

  73. Spyropoulos A et al (2014) Learning to detect ground control points for improving the accuracy of stereo matching. In: Proceedings of the IEEE conference on computer vision and pattern recognition (CVPR), pp 1621–1628

    Google Scholar 

  74. Ding L et al (2001) On the canny edge detector. Pattern Recogn 34(3):721–725

    Article  MATH  Google Scholar 

  75. Egnal G et al (2002) Detecting binocular half-occlusions: empirical comparisons of five approaches. IEEE Trans Pattern Anal Mach Intell 24(8):1127–1133

    Article  Google Scholar 

  76. Hu X et al (2012) A quantitative evaluation of confidence measures for stereo vision. IEEE Trans Pattern Anal Mach Intell 34(11):2121–2133

    Article  Google Scholar 

  77. Barron JL et al (1994) Performance of optical flow techniques. Int J Comput Vision 12:43–77

    Article  Google Scholar 

  78. Szeliski R (1999) Prediction error as a quality metric for motion and stereo. In: Proceedings of the IEEE international conference on computer vision (ICCV), vol 2. IEEE, pp 781–788

    Google Scholar 

  79. Baker S et al (2011) A database and evaluation methodology for optical flow. Int J Comput Vis 92:1–31

    Article  Google Scholar 

  80. Kalarot R et al (2011) Analysis of real-time stereo vision algorithms on gpu. In: International conference on image and vision computing New Zealand (IVCNZ), p 1

    Google Scholar 

  81. Geiger A et al (2012) Are we ready for autonomous driving? The kitti vision benchmark suite. In: Conference on computer vision and pattern recognition (CVPR)

    Google Scholar 

  82. Butler DJ et al (2012) A naturalistic open source movie for optical flow evaluation. In: European conference on computer vision (ECCV). Springer, pp 611–625

    Google Scholar 

  83. Silberman N et al (2012) Indoor segmentation and support inference from rgbd images. In: European conference on computer vision (ECCV). Springer, pp 746–760

    Google Scholar 

  84. Gaidon A et al (2016) Virtual worlds as proxy for multi-object tracking analysis. In: Proceedings of the IEEE conference on computer vision and pattern recognition (CVPR), pp 4340–4349

    Google Scholar 

  85. Cabon Y et al (2020) Virtual KITTI 2. arXiv:2001.10773

  86. Tremblay J et al (2018) Falling things: a synthetic dataset for 3d object detection and pose estimation. In: Proceedings of the IEEE conference on computer vision and pattern recognition workshops (CVPRW), pp 2038–2041

    Google Scholar 

  87. Yang G et al (2019) DrivingStereo: a large-scale dataset for stereo matching in autonomous driving scenarios. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition (CVPR), pp 899–908

    Google Scholar 

  88. Hirschmuller H et al (2007) Evaluation of cost functions for stereo matching. In: Proceedings of the IEEE conference on computer vision and pattern recognition (CVPR). IEEE, pp 1–8

    Google Scholar 

  89. Song X et al (2021) AdaStereo: a simple and efficient approach for adaptive stereo matching. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition (CVPR), pp 10 328–10 337

    Google Scholar 

  90. Jingwei Y et al (2023) Semantic segmentation for autonomous driving. Springer submitted for publication

    Google Scholar 

  91. Wang H et al (2021) SCV-Stereo: learning stereo matching from a sparse cost volume. In: Proceedings of the IEEE international conference on image processing (ICIP). IEEE, pp 3203–3207

    Google Scholar 

  92. Dosovitskiy A et al (2015) FlowNet: learning optical flow with convolutional networks. In: Proceedings of the IEEE international conference on computer vision (CVPR), pp 2758–2766

    Google Scholar 

  93. Kuznietsov Y et al (2017) Semi-supervised deep learning for monocular depth map prediction. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 6647–6655

    Google Scholar 

  94. Zhang F et al (2020) Domain-invariant stereo matching networks. In: European conference on computer vision (ECCV) 2020. Springer, pp 420–439

    Google Scholar 

  95. Yang G et al (2019) Hierarchical deep stereo matching on high-resolution images. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition (CVPR), pp 5515–5524

    Google Scholar 

  96. Zhang J et al (2022) Revisiting domain generalized stereo matching networks from a feature consistency perspective. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition (CVPR), pp 13 001–13 011

    Google Scholar 

  97. Watson J et al (2021) The temporal opportunist: self-supervised multi-frame monocular depth. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition (CVPR), pp 1164–1174

    Google Scholar 

  98. Shu C et al (2020) Feature-metric loss for self-supervised learning of depth and egomotion. In: European conference on computer vision (ECCV). Springer, pp 572–588

    Google Scholar 

  99. Godard C et al (2019) Digging into self-supervised monocular depth estimation. In: Proceedings of the IEEE/CVF international conference on computer vision (ICCV), pp 3828–3838

    Google Scholar 

  100. Kim S et al (2020) Adversarial confidence estimation networks for robust stereo matching. IEEE Trans Intell Transp Syst 22(11):6875–6889

    Article  Google Scholar 

  101. Wu C-Y et al (2022) Toward practical monocular indoor depth estimation. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition (CVPR), pp 3814–3824

    Google Scholar 

  102. Kanopoulos N et al (1988) Design of an image edge detection filter using the sobel operator. IEEE J Solid-State Circuits 23(2):358–367

    Article  Google Scholar 

  103. Liu H et al (2021) Pseudo supervised monocular depth estimation with teacher-student network. arXiv:2110.11545

  104. Hartley R et al (2003) Multiple view geometry in computer vision. Cambridge University Press

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key R &D Program of China under Grant 2020AAA0108100, the National Natural Science Foundation of China under Grant 62233013, and the Science and Technology Commission of Shanghai Municipal under Grant 22511104500.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rui Fan .

Editor information

Editors and Affiliations

Appendices

Appendix

Lie Group SO(3)

In the three-dimensional space, the coordinates of a 3D point in two coordinate systems are \(\boldsymbol{x}_{1}=[x_{1},y_{1},z_{1}]^\top \) and \(\boldsymbol{x}_{2}=[x_{2},y_{2},z_{2}]^\top \in \mathbb {R}^{3\times 1}\), respectively. \(\boldsymbol{x}_{1}\) can be transformed into \(\boldsymbol{x}_{2}\) using a rotation matrix \(\boldsymbol{R}\in \mathbb {R}^{3\times 3}\) and a translation vector \(\boldsymbol{t}\in \mathbb {R}^{3\times 1}\):

$$\begin{aligned} \boldsymbol{x_2}=\boldsymbol{R}\boldsymbol{x_1}+\boldsymbol{t}, \end{aligned}$$
(A.1)

where \(\boldsymbol{R}\) satisfies orthogonality:

$$\begin{aligned} \boldsymbol{R}^\top =\boldsymbol{R}^{-1}\ \ \text {and} \ \ |\text {det}(\boldsymbol{R})|=1, \end{aligned}$$
(A.2)

where \(\text {det}(\boldsymbol{R})\) represents the determinant of \(\boldsymbol{R}\). The subgroup of orthogonal matrices with \(\text {det}(\boldsymbol{R})=+1\) is referred to as a special orthogonal group and is denoted as SO(3).

Skew-Symmetric Matrix

In linear algebra, a skew-symmetric matrix \(\boldsymbol{A}\) satisfies the following property:

$$\begin{aligned} \boldsymbol{A}\text { is a skew-symmetrix matrix}\Leftrightarrow \boldsymbol{A}^\top =-\boldsymbol{A}. \end{aligned}$$
(B.1)

In 3D computer vision, the skew-symmetric matrix \([\boldsymbol{a}]_{\times }\) of a vector \(\boldsymbol{a}=[a_{1},a_{2},a_{3}]\) is defined as [104]:

$$\begin{aligned}{}[\boldsymbol{a}]_{\times }=\left[ \begin{matrix} 0 &{} -{{a}_{3}} &{} {{a}_{2}} \\ {{a}_{3}} &{} 0 &{} -{{a}_{1}} \\ -{{a}_{2}} &{} {{a}_{1}} &{} 0 \\ \end{matrix} \right] . \end{aligned}$$
(B.2)

The two properties of a skew-symmetric matrix are as follows:

$$\begin{aligned} \boldsymbol{a}^\top [\boldsymbol{a}]_{\times } = \boldsymbol{0}^\top , \text { } [\boldsymbol{a}]_{\times } \boldsymbol{a} = \boldsymbol{0}, \end{aligned}$$
(B.3)

where \(\boldsymbol{0}=[0,0,0]^\top \) is a zero vector. Furthermore, a skew-symmetric matrix can also represent cross product as matrix multiplication. Specifically, for two vectors \(\boldsymbol{a}\) and \(\boldsymbol{b}\), their cross product can be expressed as [104]:

$$\begin{aligned} \boldsymbol{a} \times \boldsymbol{b} = [\boldsymbol{a}]_{\times } \boldsymbol{b} = -[\boldsymbol{b}]_{\times } \boldsymbol{a}. \end{aligned}$$
(B.4)

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Liu, CW., Wang, H., Guo, S., Bocus, M.J., Chen, Q., Fan, R. (2023). Stereo Matching: Fundamentals, State-of-the-Art, and Existing Challenges. In: Fan, R., Guo, S., Bocus, M.J. (eds) Autonomous Driving Perception. Advances in Computer Vision and Pattern Recognition. Springer, Singapore. https://doi.org/10.1007/978-981-99-4287-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-4287-9_3

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-4286-2

  • Online ISBN: 978-981-99-4287-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics