Skip to main content

Red Emitting Phosphors for Display and Lighting Applications

  • Chapter
  • First Online:
Advanced Materials for Solid State Lighting

Part of the book series: Progress in Optical Science and Photonics ((POSP,volume 25))

  • 293 Accesses

Abstract

Efficient and stable red phosphors are greatly important with respect to their applications in solid state lighting and display panels. The incorporation of red phosphors makes value addition to the current lighting technology and displays in terms of high color rendering index (CRI), low correlated color temperature (CCT) and full color gamut. The current chapter focuses to bring out the developments in the lighting technology and the importance of red phosphors for various applications more particularly in the area of lighting and displays. The commonly used red activator ions such as Eu3+, Eu2+, Sm3+, Pr3+, Mn4+ and Cr3+ are also described in the chapter about their luminescence characteristics and their suitability for red phosphor applications in lighting and displays. To achieve an efficient red luminescence, a suitable host lattice should be able to accommodate the red activator ions with less phonon vibrations, good thermal and chemical stability. The influence of the common host lattices like orthosilicates, nitrides and oxynitrides, sulfides and other oxides is illustrated for the electronic transitions of various activator ions to provide the red luminescence. A large number of red phosphors in different host lattices have been developed and the notable ones are CaAlSiN3:Eu2+, Y2O2S:Eu3+ and (Sr, Ba)3SiO5:Eu2+ that have shown commercial potentiality for display and lighting applications. Still there are many challenges in developing red phosphors for their lacuna in weak absorptions, large stokes shift, broad and narrow emissions, cumbersome and energy intensive synthesis routes, thermal and chemical stability and quantum efficiency. In this context, the discovery of novel red phosphors with excellent luminescence properties under efficient excitations in the near UV and blue light is expected for warm light illumination and display panels with full color gamut.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. M. Joanna, S.E. Lauren, Review: down conversion materials for solid state lighting. J. Am. Ceram. Soc. 97, 1327–1352 (2014)

    Article  Google Scholar 

  2. S. Ye, F. Xiao, Y.X. Pan, Y.Y. Ma, Q.Y. Zhang, Phosphors in phosphor-converted white light-emitting diodes: recent advances in materials, techniques and properties. Mater. Sci. Eng. R: Rep. 71, 1–34 (2010)

    Article  Google Scholar 

  3. Q. Zhou, L. Dolgov, A.M. Srivastava, L. Zhou, Z. Wang, J. Shi, M.D. Dramicanin, M.G. Brik, M. Wu, Mn2+ and Mn4+ red phosphors: synthesis, luminescence and applications in WLEDs. A Review. J. Mater. Chem. C 6, 2652–2671 (2018)

    Article  Google Scholar 

  4. G. Li, J. Lin, Recent progress in low-voltage cathodoluminescent materials: synthesis, improvement and emission properties. Chem. Soc. Rev. 43, 7099–7131 (2014)

    Article  ADS  Google Scholar 

  5. M.R. Krames, O.B. Shchekin, R. Mueller-Mach, G.O. Mueller, L. Zhou, G. Harbers, M.G. Craford, Status and future of high-power light-emitting diodes for solid-state lighting. J. Disp. Technol. 3, 160–175 (2007)

    Article  ADS  Google Scholar 

  6. A. Bindhu, I.N. Jawahar, G. Subodh, Distortion and energy transfer assisted tunability in garnet phosphors. Crit. Rev. Solid State Mater. Sci. 47, 621–664 (2021)

    Article  Google Scholar 

  7. I. Moreno, U. Contreras, Color distribution from multicolor LED arrays. Opt. Express 15, 3607–3618 (2007)

    Article  ADS  Google Scholar 

  8. E.F. Schubert, J.K. Kim, Solid-state light sources getting smart. Science 308, 1274–1278 (2005)

    Article  ADS  Google Scholar 

  9. J.Y. Tsao, M.E. Coltrin, M.H. Crawford, J.A. Simmons, Solid-state lighting: an integrated human factors, technology, and economic perspective. Proc. IEEE 98, 1162–1179 (2010)

    Article  Google Scholar 

  10. P.S. Dutta, A. Khanna, Eu3+ activated molybdate and tungstate based red phosphors with charge transfer band in blue region. ECS J. Solid State Sci. Technol. 2, R3153–R3167 (2013)

    Article  Google Scholar 

  11. J.E. Kaufman, J.F. Christensen, Lighting Handbook (Waverly Press, Maryland, 1972)

    Google Scholar 

  12. Y.F. Wu, Y.T. Nien, Y.J. Wang, I.G. Chen, Enhancement of photoluminescence and color purity of CaTiO3:Eu phosphor by Li doping. J. Am. Ceram. Soc. 95, 1360–1366 (2012)

    Article  Google Scholar 

  13. W.R. Stevens, Building Physics: Lighting (Pergamon Press, London, 1969)

    Google Scholar 

  14. X. Piao, K. Machida, T. Horikawa, H. Hanzawa, Y. Shimomura, N. Kijima, Preparation of CaAlSiN3:Eu2+ phosphors by the self-propagating high-temperature synthesis and their luminescent properties. Chem. Mater. 19, 4592–4599 (2007)

    Article  Google Scholar 

  15. J.S. Kim, K.T. Lim, Y.S. Jeong, P.E. Jeon, J.C. Choi, H.L. Park, Full-color Ba3MgSi2O8:Eu2+, Mn2+ phosphors for white-light-emitting diodes. Solid State Commun. 135, 21–25 (2005)

    Article  ADS  Google Scholar 

  16. J. Oh, H. Kang, Y.J. Eo, H.K. Park, Y.R. Do, Synthesis of narrow-band red-emitting K2SiF6:Mn4+ phosphors for a deep red monochromatic LED and ultrahigh color quality warm-white LEDs. J. Mater. Chem. C 3, 607–615 (2015)

    Article  Google Scholar 

  17. R. Cao, Y. Ye, Q. Peng, G. Zheng, H. Ao, J. Fu, Y. Guo, B. Guo, Synthesis and luminescence characteristics of novel red-emitting Ba2TiGe2O8:Mn4+ phosphor. Dye. Pigment. 146, 14–19 (2017)

    Article  Google Scholar 

  18. S. Liang, G. Li, P. Dang, Y. Wei, H. Lian, J. Lin, Cation substitution induced adjustment on lattice structure and photoluminescence properties of Mg14Ge5O24:Mn4+: optimized emission for w-LED and thermometry applications. Adv. Opt. Mater. 7, 1900093–1900107 (2019)

    Google Scholar 

  19. S. Fu, L. Tian, A novel deep red emission phosphor BaAl2Ge2O8:Mn4+ for plant growth LEDs. Optik (Stuttg) 183, 635–641 (2019)

    Article  ADS  Google Scholar 

  20. S.P. Singh, M. Kim, W.B. Park, J. Lee, K. Sohn, Discovery of a red-emitting Li3RbGe8O18:Mn4+ phosphor in the alkali-germanate system: structural determination and electronic calculations. Inorg. Chem. 55, 10310–10319 (2016)

    Article  Google Scholar 

  21. T. Wang, X. Xu, D. Zhou, J. Qiu, X. Yu, Red phosphor Ca2Ge7O16:Eu3+ for potential application in field emission displays and white light-emitting diodes. Mater. Res. Bull. 60, 876–881 (2014)

    Article  Google Scholar 

  22. N.T.K. Chi, N.V. Quang, N.T. Tuan, N.D.T. Kien, D.Q. Trung, P.T. Huy, P.D. Tam, D.H. Nguyen, Deep red emitting MgAl2O4:Cr3+ phosphor for solid state lighting. J. Electron. Mater. 48, 5891–5891 (2019)

    Google Scholar 

  23. A. Bednarkiewicz, K. Trejgis, J. Drabik, A. Kowalczyk, L. Marciniak, Phosphor assisted temperature sensing and imaging using resonant and nonresonant photoexcitation scheme. ACS Appl. Mater. Interfaces 9, 43081–43089 (2017)

    Article  Google Scholar 

  24. X. Wang, Q. Liu, Y. Bu, C.S. Liu, T. Liu, X. Yan, Optical temperature sensing of rare earth ion doped phosphors. RSC Adv. 5, 86219–86236 (2015)

    Article  ADS  Google Scholar 

  25. G. Rajkumara, V. Ponnusamya, G.V. Kanmania, M.T. Jose, Ternary type BaY2ZnO5:Eu3+ deep-red phosphor for possible latent fingerprint, security ink and WLED applications. Ceram. Int. 48, 10–21 (2022)

    Article  Google Scholar 

  26. E. Pavitra, G.S.R. Raju, J.Y. Park, S.K. Hussain, N.R. Chodankar, G.M. Rao, Y.K. Han, Y.S. Huh, An efficient far-red emitting Ba2LaNbO6:Mn4+ nanophosphor for forensic latent fingerprint detection and horticulture lighting applications. Ceram. Int. 46, 9802–9809 (2020)

    Article  Google Scholar 

  27. B.B. Srivastava, S.K. Gupta, R. Barbosa, A. Villarreal, K. Lozano, Y. Mao, Rare earth free bright and persistent white light emitting zinc gallo-germanate nanosheets: technological advancement to fibers with enhanced quantum efficiency. Mater. Adv. 28, 4058–4067 (2021)

    Article  Google Scholar 

  28. A. Abdukayum, J.T. Chen, Q. Zhao, X.P. Yan, Functional near infrared-emitting Cr3+/Pr3+ co-doped zinc gallogermanate persistent luminescent nanoparticles with super long afterglow for in vivo targeted bioimaging. J. Am. Chem. Soc. 135, 14125–14133 (2013)

    Article  Google Scholar 

  29. L.H.C. Francisco, R.P. Moreira, M.C.F.C. Felinto, V.C. Teixeira, H.F. Brito, O.L. Malta, SrAl2O4:Eu2+, Dy3+ persistent luminescent materials functionalized with the Eu3+ (TTA)-complex by microwave-assisted method. J. Alloys Compd. 882(160608), 1–12 (2021)

    Google Scholar 

  30. F. Xue, Y. Hu, L. Chen, H. Wu, G. Ju, T. Wang, L. Yang, A novel rare-earth free red long-persistent phosphor: Mg2GeO4:Mn4+. Ceram. Int. 43, 15141–15145 (2017)

    Article  Google Scholar 

  31. J. Zhou, Z. Xia, Synthesis and near-infrared luminescence of La3GaGe5O16:Cr3+ phosphors. RSC Adv. 4, 46313–46318 (2014)

    Article  ADS  Google Scholar 

  32. X. Zhang, J. Wang, J. Zhang, Q. Su, Photoluminescence properties of Eu2+ doped Ba2ZnS3 phosphor for white light emitting diodes. Matter. Lett. 61, 761–764 (2007)

    Article  Google Scholar 

  33. S.U. Khan, W.U. Khan, W.U. Khan, D. Khan, S. Saeed, S. Badshah, M. Ikram, T.A. Saleh, Eu3+, Sm3+ deep-red phosphors as novel materials for white light-emitting diodes and simultaneous performance enhancement of organic–inorganic perovskite solar cells. Small, 2001551 (2020)

    Google Scholar 

  34. H. Liu, S. Guo, Y. Hao, H. Wang, B. Xu, Luminescent properties of Eu3+ and Sm3+ activated M2SiO4 (M = Ba, Sr and Ca) red-emitting phosphors for WLEDs. J. Lumin. 132, 2908–2912 (2012)

    Article  Google Scholar 

  35. R. Priya, I. Khurana, O.P. Pandey, Synthesis of intense red light-emitting β-Ca2SiO4:Eu3+ phosphors for near UV-excited light-emitting diodes utilizing agro-food waste materials. J. Mater. Sci.: Mater. Electron. 31, 1912–1928 (2020)

    Google Scholar 

  36. J. Qiao, M. Amachraa, M. Molokeev, Y. Chuang, S.P. Ong, Q. Zhang, Z. Xia, Engineering of K3YSi2O7 to tune photoluminescence with selected activators and site occupancy. Chem. Mater. 31, 7770–7778 (2019)

    Article  Google Scholar 

  37. L.L. Devia, C. Basavapoornima, S.R. Depuru, V. Venkatramu, C.K. Jayasankar, Agricultural waste for the development of low cost Ca2SiO4:Pr3+ phosphors. J. Lumin. 250, 119059 (2022)

    Article  Google Scholar 

  38. L.L. Devi, C.K. Jayasankar, Novel reddish-orange color emitting Ca2SiO4:Sm3+ phosphors for white LED applications prepared by using agricultural waste. J. Lumin. 221, 116996 (2021)

    Article  Google Scholar 

  39. A. Fu, L. Zhou, S. Wang, Y. Li, Preparation, structural and optical characteristics of a deep red emitting Mg2Al4Si5O18:Mn4+ phosphor for warm w-LEDs. Dye. Pigment. 148, 9–15 (2018)

    Article  Google Scholar 

  40. M. Pellerina, E. Glaisa, T. Lecuyer, J. Xu, J. Seguin, S. Tanabe, C. Chanéac, B. Viana, C. Richard, LaAlO3:Cr3+, Sm3+: nano-perovskite with persistent luminescence for in vivo optical imaging. J. Lumin. 202, 83–88 (2018)

    Article  Google Scholar 

  41. Y. Shi, Z. Yang, W. Wang, G. Zhu, Y. Wang, Novel red phosphors Na2CaSiO4:Eu3+ for light-emitting diodes. Mater. Res. Bull. 46, 1148–1150 (2011)

    Article  Google Scholar 

  42. A.G. Bispo, D.A. Ceccato, S.A.M. Lima, A.M. Pires, Red phosphor based on Eu3+-iso electronically doped Ba2SiO4 obtained via sol–gel route for solid state lightning. RSC Adv. 7, 53752–53762 (2017)

    Article  ADS  Google Scholar 

  43. L. Zhao, F. Fan, X. Chen, Y. Wang, Y. Li, B. Den, Luminescence and thermal-quenching properties of silicate-based red-emitting K4CaSi3O9:Eu3+ phosphor. J. Mater. Sci.: Mater. Electron. 29, 5975–5981 (2018)

    Google Scholar 

  44. M.M.R. Garcı, A. Ciric, Z. Ristic, J.A.G. Williams, M.D. Dramicanin, I.R. Evans, Narrow-band red phosphors of high colour purity based on Eu3+-activated apatite-type Gd9.33(SiO4)6O2. J. Mater. Chem. C 9, 7474–7484 (2021)

    Google Scholar 

  45. I.P. Sahu, D.P. Bisen, N. Brahme, Europium doped di-calcium magnesium di-silicate orange red emitting phosphor by solid state reaction method. J. Radiat. Res. Appl. Sci. 8, 381–388 (2015)

    Google Scholar 

  46. Y. Sato, R. Miyake, A. Tanigaki, S. Akiyama, K. Tomita, M. Kakihan, A novel Eu2+-activated calcium zirconium silicate phosphor: Ca3ZrSi2O9:Eu2+. J. Lumin. 231, 117752 (2021)

    Article  Google Scholar 

  47. A. Mayavan, S.D. Krishnana, P. Rajendran, K. Jang, S. Gandhia, Silica nanoparticles assisted preparation of reddish-yellow emitting Eu2+ activated remote-type CaSrSiO4 phosphor for warm white LED applications. Ceram. Int. 46, 12216–12223 (2020)

    Article  Google Scholar 

  48. Y. Shen, K. Qiu, W. Zhanga, Y. Zeng, Red-emitting enhancement of Bi4Si3O12:Sm3+ phosphor by Pr3+ co-doping for white LEDs application. Ceram. Int. 43, 1958–1963 (2017)

    Google Scholar 

  49. R. Yang, H. Xiaoye, L. Tao, Z. Xinmu, Z. Xuezhen, L. Yongxiu, J. Rare Earths 29, 198–201 (2011)

    Article  Google Scholar 

  50. Z. Zhang, L. Wang, S. Yang, W. Chen, X. Chu, Synthesis and characterizations of novel Ba2La8(SiO4)6O2:Eu3+ oxyapatite phosphors. Dye. Pigment. 142, 272–276 (2017)

    Article  Google Scholar 

  51. H. Zou, D. Peng, X. Wang, Y. Li, X. Yao, A highly thermal stable and waterproof red phosphor: Pr3+-doped Sr2Al2SiO7. J. Mater. Sci. 48, 7981–7985 (2013)

    Article  ADS  Google Scholar 

  52. N.K. Ozpozan, E. Osturk, Red phosphors in MgAl2Si2O8 doping with Mn4+, Gd3+ and Lu3+ and host-sensitized luminescence properties. J. Therm. Anal. Calorim. 111, 273–277 (2013)

    Article  Google Scholar 

  53. T. Jansen, T. Justel, M. Kirm, S. Vielhauer, N.M. Khaidukov, V.N. Makhov, Composition dependent spectral shift of Mn4+ luminescence in silicate garnet hosts CaY2M2Al2SiO12 (M = Al, Ga, Sc). J. Lumin. 198, 314–319 (2019)

    Article  Google Scholar 

  54. M.K. Jang, Y.S. Cho, Y.D. Huh, Preparation of red-emitting BaSiF6:Mn4+ phosphors for three-band white LEDs. Opt. Mater. 101, 109734 (2020)

    Article  Google Scholar 

  55. J. Ding, Q. Wu, Y. Li, Q. Long, Y. Wang, X. Ma, Y. Wang, α-M3B2N4 (M = Ca, Sr):Eu3+: a nitride-based red phosphor with a sharp emission line and broad excitation band used for WLED. J. Phys. Chem. C 121, 10102–10111 (2017)

    Article  Google Scholar 

  56. Y.Q. Li, J.E.J. Steen, J.W.H. Krevel, G. Botty, A.C.A. Delsing, F.J. DiSalvo, G. With, H.T. Hintzen, Luminescence properties of red-emitting M2Si5N8:Eu2+ (M = Ca, Sr, Ba) LED conversion phosphors. J. Alloys Compd. 417, 273–279 (2013)

    Article  Google Scholar 

  57. R. Wang, M.Y. Wang, G. Li, J.H. Zhang, Y.J. Zhang, H. Lin, E.Y.B. Pun, D.S. Li, Red-emitting improvement of CaAlSiN3:Eu2+ phosphor-in-glass: insight into the effect of atmospheric pressure preparation on photoluminescence properties and thermal degradation. J. Lumin. 225, 117390 (2020)

    Article  Google Scholar 

  58. H. Yunsheng, Z. Weidong, H. Huaqiang, L. Ronghui, C. Guantong, L. Yuanhong, H. Xiaowei, High temperature stability of Eu2+-activated nitride red phosphors. J. Rare Earths 32, 12–16 (2014)

    Article  Google Scholar 

  59. H.Q. Trinh, J.O. Jo, S.B. Lee, Y.S. Mok, Preparation of red nitride phosphor from powder mixture of metal nitrides using spark plasma sintering. Curr. Appl. Phys. 14, 1051–1056 (2014)

    Article  ADS  Google Scholar 

  60. S.H. Jung, D.S. Kang, D.Y. Jeon, Effect of substitution of nitrogen ion stored-emitting Sr3B2O6−3/2xNx:Eu2+ oxy-nitride phosphor for the application to white LED. J. Cryst. Growth 326, 116–119 (2011)

    Google Scholar 

  61. J. Park, S.J. Lee, Y.J. Kim, Evolution of luminescence of Sr2−y−zCazSi(O1−xNx)4:yEu2+ with N3−, Eu2+, and Ca2+ substitutions. Cryst. Growth Des. 13, 5204–5210 (2013)

    Article  Google Scholar 

  62. S. Hasegawa, T. Hasegawa, S.W. Kim, R. Yamanashi, K. Uematsu, K. Toda, M. Sato, Single crystal growth and crystal structure analysis of novel orange-red emission pure nitride CaAl2Si4N8:Eu2+ phosphor. ACS Omega 4, 9939–9945 (2019)

    Article  Google Scholar 

  63. E. Elzer, P. Strobel, V. Weiler, P.J. Schmidt, W. Schnick, Illuminating nitridoberylloaluminates: the highly efficient red-emitting phosphor Sr2[BeAl3N5]:Eu2+. Chem. Mater. 32, 6611–6617 (2020)

    Article  Google Scholar 

  64. E.L. Rohello, Y. Suffren, O.M. Conanec, O. Guillou, C. Calers, F. Chevir, Synthesis and photoluminescence properties of Mn2+ doped Ca1−xSrxCN2 phosphors prepared by a carbon nitride based route. J. Solid State Chem. 300, 122240 (2021)

    Article  Google Scholar 

  65. N.J. Cherepy, S.A. Payne, N.M. Harvey, D. Aberg, Z.M. Seeley, K.S. Holliday, I.C. Tran, F. Zhou, H.P. Martinez, J.M. Demeyer, A.D. Drobshoff, A.M. Srivastava, S.J. Camardello, H.A. Comanzo, D.L. Schlagel, T.A. Lograsso, Red-emitting manganese-doped aluminum nitride phosphor. Opt. Mater. 54, 14–21 (2016)

    Article  ADS  Google Scholar 

  66. Y. Xia, S. Li, Y. Zhang, T. Takeda, N. Hirosaki, R.J. Xie, Discovery of a Ce3+-activated red nitride phosphor for high-brightness solid-state lighting. J. Mater. Chem. C 8, 14402–14408 (2020)

    Article  Google Scholar 

  67. M. Nitta, N. Nagao, Y. Nomura, T. Hirasawa, Y. Sakai, T. Ogata, M. Azuma, S. Torii, T. Ishigak, Y. Inada, High-brightness red-emitting phosphor La3(Si, Al)6(O, N)11:Ce3+ for next-generation solid-state light sources. ACS Appl. Mater. Interfaces 12, 31652–31658 (2020)

    Article  Google Scholar 

  68. J.L. Leanno, A. Lazarowska, S. Mahlik, M. Grinberg, H.S. Sheu, R.S. Liu, Disentangling red emission and compensatory defects in Sr[LiAl3N4]:Ce3+ phosphor. Chem. Mater. 30, 4493–4497 (2018)

    Article  Google Scholar 

  69. C. Maak, P. Strobel, V. Weiler, P.J. Schmidt, W. Schnick, Unprecedented deep-red Ce3+ luminescence of the nitridolithosilicates Li38.7RE3.3Ca5.7[Li2Si30N59]O2F (RE = La, Ce, Y). Chem. Mater. 30, 5500–5506 (2018)

    Google Scholar 

  70. Z. Zhang, O.M. Kate, A.C.A. Delsing, M.J.H. Stevens, J. Zhao, Photoluminescence properties of Yb2+ in CaAlSiN3 as a novel red-emitting phosphor for white LEDs. J. Mater. Chem. 22, 23871–23876 (2012)

    Article  Google Scholar 

  71. S. Ye, C. Shi, J. Zhou, J. Ding, Q. Wu, Li2CaSi2N4:Sm3+: a nitride-based red phosphor with excellent temperature sensitivity and cathodoluminescence for temperature sensor and FED. J. Alloys Compd. 892, 162092 (2022)

    Google Scholar 

  72. T.C. Liu, B.M. Cheng, S.F. Hu, R.S. Liu, Highly stable red oxynitride β-SiAlON:Pr3+ phosphor for light-emitting diodes. Chem. Mater. 23, 3698–3705 (2011)

    Article  Google Scholar 

  73. S.P. Lee, T.S. Chan, T.M. Chen, Novel reddish-orange-emitting BaLa2Si2S8:Eu2+ thiosilicate phosphor for LED lighting. ACS Appl. Mater. Interfaces 7, 40–44 (2015)

    Article  Google Scholar 

  74. X. Zhaoxian, C. Yayong, C. Zhihui, S. Chunxiao, Modification of luminescent properties of red sulphide phosphors for white LED lighting. J. Rare Earths 24, 133–136 (2006)

    Article  Google Scholar 

  75. D.O.A. Santos, L. Giordano, M.A.S.G. Barbara, M.C. Portes, C.C.S. Pedroso, V.C. Teixeira, M. Lastusaari, L.C.V. Rodrigues, Abnormal co-doping effect on the red persistent luminescence SrS:Eu2+, RE3+ materials. Dalton Trans. 49, 16386–16393 (2020)

    Article  Google Scholar 

  76. W. Zhou, S. Deng, C. Rong, Q. Xie, S. Lian, J. Zhang, C. Li, L. Yu, Synthesis, crystal structure and luminescence process of a near ultraviolet-green to red spectral converter BaY2S4:Eu2+, Er3+. RSC Adv. 3, 16781–16787 (2013)

    Article  ADS  Google Scholar 

  77. X. Yin, L. Liu, J. Yang, Z. Peng, Y. Yang, Luminescent property of Y2O2S:Eu3+ nanophosphors prepared by molten salt synthesis. Inorg. Nano-Met. Chem. 49, 198–203 (2019)

    Article  Google Scholar 

  78. Y.C. Wu, Y.C. Chen, D.Y. Wang, C.S. Lee, C.C. Sun, T.M. Chen, α-(Y, Gd)FS:Ce3+: a novel red-emitting fluorosulfide phosphor for solid-state lighting. J. Mater. Chem. 21, 15163–15166 (2011)

    Google Scholar 

  79. Y.C. Wu, Y.C. Chen, T.M. Chen, C.S. Lee, K.J. Chen, H.C. Kuo, Crystal structure characterization, optical and photoluminescent properties of tunable yellow- to orange-emitting Y2(Ca, Sr)F4S2:Ce3+ phosphors for solid-state lighting. J. Mater. Chem. 22, 8048–8056 (2012)

    Article  Google Scholar 

  80. X. Yin, Y. Wang, F. Huang, Y. Xia, D. Wan, J. Yao, Excellent red phosphors of double perovskite Ca2LaMO6:Eu (M = Sb, Nb, Ta) with distorted coordination environment. J. Solid State Chem. 184, 3324–3328 (2011)

    Article  ADS  Google Scholar 

  81. G. Rajkumar, V. Ponnusamy, G.V. Kanmani, M.T. Jose, A new perovskite type Ba2YZrO6:Eu3+ red phosphor with cubical morphology for WLEDs applications. J. Lumin. 227, 117561 (2020)

    Article  Google Scholar 

  82. T.S. Sreena, P.P. Rao, A.K.V. Raj, P.S. Babu, Influence of structural disorder on the photoluminescence properties of Eu3+ doped red phosphors: Ca2Y3−xNb3O14:xEu3+. ChemistrySelect 1, 3413–3422 (2016)

    Article  Google Scholar 

  83. S.K. Mahesh, P.P. Rao, M. Thomas, T.L. Francis, P. Koshy, Influence of cation substitution and activator site exchange on the photoluminescence properties of Eu3+-doped quaternary pyrochlore oxides. Inorg. Chem. 52, 13304–13313 (2013)

    Article  Google Scholar 

  84. M. Thomas, P.P. Rao, S.K. Mahesh, V.R. Reshmi, T.L. Francis, P. Koshy, Improvement of morphology and luminescence properties of powellite type red phosphors CaGd1−xNbMoO8:xEu3+ synthesized via citrate gel route. J. Am. Chem. Soc. 95, 2260–2265 (2012)

    Google Scholar 

  85. A.K.V. Raj, P.P. Rao, T.S. Sreena, S. Sameera, V. James, U.A. Renju, Remarkable changes in the photoluminescent properties of Y2Ce2O7:Eu3+ red phosphors through modification of the cerium oxidation states and oxygen vacancy ordering. Phys. Chem. Chem. Phys. 16, 23699–23710 (2014)

    Article  Google Scholar 

  86. Z.T. Liang, S. Zhen, S.X. Ping, B. Liu, L.Q. Lin, A red oxide phosphor, Sr2ScAlO5:Eu2+ with perovskite-type structure, for white light-emitting diodes. Chin. Phys. B 19, 127808 (2010)

    Article  ADS  Google Scholar 

  87. A. Zhang, Z. Sun, M. Jia, Z. Fu, B. Chun Choi, J.H. Jeong, S.H. Park, Sm3+-doped niobate orange-red phosphors with a double-perovskite structure for plant cultivation and temperature sensing. J. Alloys Compd. 889, 161671 (2021)

    Google Scholar 

  88. Y. Ke, B. Zhao, K. Ding, Y. Wang, S. Shu, B. Deng, G. Wang, R. Yu, Orange-red-emitting Sm3+-doped double perovskite CaY0.5Ta0.5O3 phosphor with highly thermal stability for white LED applications. J. Lumin. 221, 116997 (2020)

    Article  Google Scholar 

  89. A. Garbout, T. Turki, M. Ferid, Structural and photoluminescence characteristics of Sm3+ activated RE2Ti2O7 (RE = Gd, La) as orange red emitting phosphors. J. Lumin. 196, 326–336 (2018)

    Article  Google Scholar 

  90. S.K. Gupta, C. Reghukumar, K. Sudarshan, P.S. Ghosh, N. Pathak, R.M. Kadam, Orange-red emitting Gd2Zr2O7:Sm3+: structure-property correlation, optical properties and defect spectroscopy. J. Phys. Chem. Solids 116, 360–366 (2018)

    Article  ADS  Google Scholar 

  91. L. Zhao, W. Yongfeng, C. Jing, J. Yuanru, Z. Xicheng, M. Zhixin, Hydrothermal synthesis and luminescent properties of BaMoO4:Sm3+ red phosphor. J. Rare Earths 34, 143–147 (2016)

    Article  Google Scholar 

  92. X. Yang, L. Zhao, W. Chen, Z. Liu, X. Fan, S. Tian, X. Xu, J. Qiu, X. Yu, Low-temperature red long-persistent luminescence of Pr3+ doped NaNbO3 with a perovskite structure. J. Lumin. 208, 290–295 (2019)

    Article  Google Scholar 

  93. J.P. Zuniga, S.K. Gupta, M. Pokhrel, Y. Mao, Exploring the optical properties of La2Hf2O7:Pr3+ nanoparticles under UV and X-ray excitation for potential lighting and scintillating applications. New J. Chem. 42, 9381–9392 (2018)

    Article  Google Scholar 

  94. R.B. Basavaraj, D. Navami, N.H. Deepthi, M. Venkataravanappa, R. Lokesh, K.H.S. Kumare, T.K. Sreelakshmi, Novel orange-red emitting Pr3+ doped CeO2 nanopowders for white light emitting diode applications. Inorg. Chem. Commun. 120, 108164 (2020)

    Article  Google Scholar 

  95. L. Zhao, Z. Xicheng, J. Yuanru, Hydrothermal preparation and photoluminescent property of LiY(MoO4)2:Pr3+ red phosphors for white light-emitting diodes. J. Rare Earths 33, 33–36 (2015)

    Article  Google Scholar 

  96. N. Ma, W. Li, B. Devakumar, S. Wang, L. Sun, Z. Zhang, X. Huang, Bright red luminescence from Mn4+ ions doped Sr2LuTaO6 double-perovskite phosphors. J. Lumin. 233, 117901 (2021)

    Article  Google Scholar 

  97. H. Chen, H. Lin, Q. Huang, F. Huang, J. Xu, B. Wang, Z. Lin, J. Zhou, Y. Wang, A novel double-perovskite Gd2ZnTiO6:Mn4+ red phosphor for UV-based w-LEDs: structure and luminescence properties. J. Mater. Chem. C 4, 2374–2381 (2016)

    Article  Google Scholar 

  98. T. Senden, F.T.H. Broers, A. Meijerink, Comparative study of the Mn4+ 2E → 4A2 luminescence in isostructural RE2Sn2O7:Mn4+ pyrochlores (RE3+ = Y3+, Lu3+ or Gd3+). Opt. Mater. 60, 431–437 (2016)

    Article  ADS  Google Scholar 

  99. Y. Han, S. Wang, H. Liu, L. Shi, W. Zhang, L. Cai, Z. Mao, D. Wang, Z. Mu, Z. Zhang, Y. Zhao, Mn4+ doped tetratungstate Sr9Gd2W4O24 far-red phosphor: synthesis, luminescence properties, and potential applications in indoor plant cultivation. J. Lumin. 220, 117027 (2020)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Prabhakar Rao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Raj, A.K.V., Rao, P.P. (2023). Red Emitting Phosphors for Display and Lighting Applications. In: Kumar, V., Sharma, V., Swart, H.C. (eds) Advanced Materials for Solid State Lighting. Progress in Optical Science and Photonics, vol 25. Springer, Singapore. https://doi.org/10.1007/978-981-99-4145-2_8

Download citation

Publish with us

Policies and ethics