Skip to main content

SnO2 Based Phosphors Materials: Synthesis, Characterization, and Applications

  • Chapter
  • First Online:
Advanced Materials for Solid State Lighting

Part of the book series: Progress in Optical Science and Photonics ((POSP,volume 25))

  • 421 Accesses

Abstract

Phosphors, which are luminescent materials, are commonly used in display panels, fluorescent tubes, and white LEDs. Phosphors are typically composed of solid inorganic materials composed of a host lattice doped with impurities. In this book chapter, we present a survey on luminescence measurements of varied rare earth ions such as europium (Eu3+), cerium (Ce3+), praseodymium (Pr3+), samarium (Sm3+), and dysprosium (Dy3+), transition metals (Cu, Mn, Ni, Co, Fe), and composite-type doped SnO2 materials under SnO2 bandgap excitation and their excitation spectra. Photoluminescence is another exciting feature of SnO2 nanomaterials, and it has received a lot of attention due to its usefulness in optoelectronic devices, including UV-light emitting diodes and laser diodes. Based on the comprehensive evidence available, we want to review the role of SnO2 nanocrystals as efficient luminescence sensitizers. The influence of calcination temperature, dopant ions, and concentration on the luminescence of nanocrystalline SnO2 particles is also discussed. Low absorption and emission cross-sections, physical–chemical aggregation, and non-radiative relaxation processes characterize rare earth-based photonic systems. To overcome these problems, doping semiconductors with rare-earth ions, transition metals, and composite materials is preferred to achieve a better quantum yield. Synthesis techniques for SnO2-based phosphor nanoparticles are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. A.M. Srivastava, C.R. Ronda, 12(2), 48 (2003)

    Google Scholar 

  2. Y.D. Xu, D. Wang, L. Wang, N. Ding, M. Shi, J.G. Zhong, S. Qi, J. Alloy. Compd. 550, 226 (2013)

    Article  Google Scholar 

  3. S. Vijayan, G. Umadevi, R. Mariappan, M. Narayanan, B. Narayanamoorthy, S. Kandasamy, Mater. Today: Proc. (2020)

    Google Scholar 

  4. L. Zur, L.T.N. Tran, M. Meneghetti, A. Lukowiak, A. Chiasera, D. Zonta, et al., 63, 95 (2017)

    Google Scholar 

  5. T. Jüstel, H. Nikol, C. Ronda, 110(22), 3250 (1998); B.M.M. Faustino, P.J. Foot, R.A. Kresinski, 206, 205 (2019)

    Google Scholar 

  6. J. Kido, Y. Okamoto, Chem. Rev. 102, 2357 (2002)

    Article  Google Scholar 

  7. J.V. Vleck, J. Phys. Chem. 41(1), 67 (1937)

    Article  Google Scholar 

  8. D.F. Crabtree, J. Phys. D Appl. Phys. 11(11), 1543 (1978)

    Article  ADS  Google Scholar 

  9. I. Hemmilä, J. Alloy. Compd. 225(1–2), 480 (1995)

    Article  Google Scholar 

  10. A.J. Kenyon, Prog. Quantum Electron. 26(4–5), 225 (2002)

    Article  ADS  Google Scholar 

  11. J.C.G. Bünzli, S. Comby, A.S. Chauvin, C.D. Vandevyver, J. Rare Earths 25(3), 257 (2007)

    Article  Google Scholar 

  12. B.M.M. Faustino, P.J. Foot, R.A. Kresinski, 206, 205 (2019); Y. Liu, W. Luo, H. Zhu, X. Chen, 131(3), 415 (2011)

    Google Scholar 

  13. J. Yuan, K. Matsumoto, H. Kimura, Anal. Chem. 70(3), 596 (1998)

    Article  Google Scholar 

  14. K. Bouras, G. Schmerber, G. Ferblantier, D. Aureau, H. Park, W.K. Kim, et al., ACS Appl. Energy Mater. 2(7), 5094 (2019)

    Google Scholar 

  15. H. Wang, P. He, S. Liu, J. Shi, M. Gong, Inorg. Chem. Commun. 13(1), 145 (2010)

    Article  Google Scholar 

  16. F.S. Richardson, Chem. Rev. 82(5), 541 (1982)

    Article  Google Scholar 

  17. I. Hemmilä, T. Ståhlberg, P. Mottram, Based on the product offering of Wallac, an EG&G Company. Wallac, an EG&G Company (1994)

    Google Scholar 

  18. G.S. Parkinson, N. Mulakaluri, Y. Losovyj, P. Jacobson, R. Pentcheva, U. Diebold, 82(12), 125413 (2010)

    Google Scholar 

  19. S.S. Ata-Allah, M. Kaiser, Phys. Status Solidi (A) 201(14), 3157 (2004)

    Article  ADS  Google Scholar 

  20. A. Pattnaik, M. Tomar, S. Mondal, V. Gupta, B. Prasad, International Workshop on the Physics of Semiconductor and Devices (Springer, Cham, 2019), pp.399–405

    Book  Google Scholar 

  21. K. Wang, C. Yi, X. Hu, C. Liu, Y. Sun, J. Hou, et al., ACS Appl. Mater. Interfaces 6(15), 1320 (2014)

    Google Scholar 

  22. S. Das, V. Jayaraman, Prog. Mater. Sci. 66, 112 (2014)

    Article  Google Scholar 

  23. Y. Zhao, X. Li, B. Yan, D. Xiong, D. Li, S. Lawes, X. Sun, Adv. Energy Mater. 6(8), 1502175 (2016)

    Article  Google Scholar 

  24. A. Sawa, Resistive switching in transition metal oxides. Mater. Today 11(6), 28–36 (2008)

    Article  Google Scholar 

  25. T.N.L. Tran, C. Armellini, S. Varas, A. Carpentiero, A. Chiappini, P. GÅ‚uchowski, et al., 47(4), 5534 (2021)

    Google Scholar 

  26. K. Bouras, G. Schmerber, D. Aureau, H. Rinnert, J.L. Rehspringer, D. Ihiawakrim, et al., Phys. Chem. Chem. Phys. 21(38), 21407 (2019)

    Google Scholar 

  27. G.H. Debnath, P. Mukherjee, D.H. Waldeck, J. Phys. Chem. C 124(49), 26495 (2020)

    Article  Google Scholar 

  28. M. Ferrari, G.C. Righini, Int. J. Appl. Glas. Sci. 6(3), 240 (2015)

    Article  Google Scholar 

  29. H. Rinnert, P. Miska, M. Vergnat, G. Schmerber, S. Colis, A. Dinia, et al., Appl. Phys. Lett. 100(10), 101908 (2012)

    Google Scholar 

  30. Z.M. Jarzebski, J.P. Marton, J. Electrochem. Soc. 123(7), 199C (1976)

    Article  ADS  Google Scholar 

  31. S. Palanichamy, PS Satheesh Kumar, S. Pandiarajan, L. Amalraj, Optik 194, 162887 (2019)

    Google Scholar 

  32. E. Shanthi, V. Dutta, A. Banerjee, K.L. Chopra, J. Appl. Phys. 51(12), 6243 (1980)

    Article  ADS  Google Scholar 

  33. B. Teldja, B. Noureddine, B. Azzeddine, T. Meriem, Optik 209, 164586 (2020)

    Article  ADS  Google Scholar 

  34. A.G. Macedo, E.A. de Vasconcelos, R. Valaski, F. Muchenski, E.F. da Silva, A.F. da Silva, L.S. Roman, Thin Solid Films 517(2), 870 (2008)

    Article  ADS  Google Scholar 

  35. Wang, Chaobao, et al., Chem. Eng. J. 411, 128505 (2021)

    Google Scholar 

  36. B. Yu, C. Zhu, F. Gan, 7(1–2), 15 (1997)

    Google Scholar 

  37. K.G. Godinho, A. Walsh, G.W. Watson, J. Phys. Chem. C 113(1), 439 (2009)

    Article  Google Scholar 

  38. S. Chen, X. Zhao, H. Xie, J. Liu, L. Duan, X. Ba, J. Zhao, Appl. Surf. Sci. 258(7), 3255 (2012)

    Article  ADS  Google Scholar 

  39. T.N.L. Tran, S. Berneschi, C. Trono, G.N. Conti, L. Zur, C. Armellini, et al., Opt. Mater. X 7, 100056 (2020)

    Google Scholar 

  40. G. Granger, C. Restoin, P. Roy, R. Jamier, S. Rougier, A. Lecomte, et al., The European conference on lasers and electro-optics. Opt. Soc. Am. (2013, May)

    Google Scholar 

  41. A. Quandt, M. Ferrari, G.C. Righini (p. 133), Springer, Cham (2017)

    Google Scholar 

  42. LTN Tran, D. Massella, L. Zur, A. Chiasera, S. Varas, C. Armellini, et al., Appl. Sci. 8(8), 1335 (2018)

    Google Scholar 

  43. I.T. Weber, A. Valentini, L.F.D. Probst, E. Longo, E.R. Leite, Mater. Lett. 62(10–11), 1677 (2008)

    Article  Google Scholar 

  44. X. Tian, T. Zhou, J. Wen, Z. Chen, C. Ji, Z. Huang, et al., Mater. Res. Bull. 129, 110882 (2020)

    Google Scholar 

  45. X. Tian, X., F. Zhou, X. Liu, H. Zhong, J. Wen, S. Lian, et al., J. Solid State Chem. 280, 120997 (2019)

    Google Scholar 

  46. F. Gu, S.F. Wang, C.F. Song, M.K. Lü, Y.X. Qi, G.J. Zhou, D. Xu, D.R. Yuan, Chem. Phys. Lett. 372(3–4), 451 (2003)

    Article  ADS  Google Scholar 

  47. H.C. Chiu, C.S. Yeh, J. Phys. Chem. C 111(20), 7256 (2007)

    Article  Google Scholar 

  48. X.W. Lou, Y. Wang, C. Yuan, J.Y. Lee, L.A. Archer, Adv. Mater. 18(17), 2325 (2006)

    Article  Google Scholar 

  49. J.Q. Hu, X.L. Ma, N.G. Shang, Z.Y. Xie, N.B. Wong, C.S. Lee, S.T. Lee, J. Phys. Chem. B 106(15), 3823 (2002)

    Article  Google Scholar 

  50. J. Zhu, Z. Lu, S.T. Aruna, D. Aurbach, A. Gedanken, Chem. Mater. 12(9), 2557–2566 (2000)

    Article  Google Scholar 

  51. H.V. Fajardo, E. Longo, L. Probst, A. Valentini, N. Carreño, M.R. Nunes, et al., Nanoscale Res. Lett. 3(5), 194–199 (2008)

    Google Scholar 

  52. V. Kumar, V. Kumar, S. Som, J.H. Neethling, E. Olivier, O.M. Ntwaeaborwa, H.C. Swart, Nanotechnology 25(13), 135701 (2014)

    Google Scholar 

  53. L. Prakash, C. Tirupathi, J. Nanosci. Technol. 478–482 (2018)

    Google Scholar 

  54. C. Wang, Y. Zhou, M. Ge, X. Xu, Z. Zhang, J.Z. Jiang, J. Am. Chem. Soc. 132(1), 46 (2010)

    Article  Google Scholar 

  55. T. Krishnakumar, R. Jayaprakash, M. Parthibavarman, A.R. Phani, V.N. Singh, B.R. Mehta, Mater. Lett. 63(11), 896 (2009)

    Article  Google Scholar 

  56. H. Wang, J. Liang, H. Fan, B. Xi, M. Zhang, S. Xiong, Y. Zhu, Y. Qian, J. Solid State Chem. 181(1), 122 (2008)

    Article  ADS  Google Scholar 

  57. C.A. Ibarguen, A. Mosquera, R. Parra, M.S. Castro, J.E. Rodríguez-Páez, Mater. Chem. Phys. 101(2–3), 433 (2007)

    Article  Google Scholar 

  58. S. Luo, J. Fan, W. Liu, M. Zhang, Z. Song, C. Lin, X. Wu, P.K. Chu, Nanotechnology 17(6), 1695 (2006)

    Article  ADS  Google Scholar 

  59. Z. Huang, J. Zhu, Y. Hu, Y. Zhu, G. Zhu, L. Hu, et al., Nanomaterials 12(4), 632 (2022)

    Google Scholar 

  60. N. Alwadai, S. Manzoor, M. Al Huwayz, M. Abdullah, R.Y. Khosa, S. Aman, et al., Surf. Interfaces 36, 102467 (2023)

    Google Scholar 

  61. A. Prakash, S. Majumdar, P.S. Devi, A. Sen, J. Membr. Sci. 326(2), 388–391 (2009)

    Article  Google Scholar 

  62. L.P. Ravaro, L.V. Scalvi, A.S. Tabata, F.M. Pontes, J.B. Oliveira, J. Appl. Phys. 114(8), 084304 (2013)

    Article  ADS  Google Scholar 

  63. D. Rehani, M. Saxena, P.R. Solanki, S.N. Sharma, J. Supercond. Novel Magn. 35(9), 2573 (2022)

    Article  Google Scholar 

  64. V. Vasanthi, M. Kottaisamy, K. Anitha, V. Ramakrishnan, Mater. Sci. Semicond. Process. 85, 141 (2018)

    Article  Google Scholar 

  65. Y. Tong, J. Ren, Y. Liu, G. Chen, 358(22), 2961 (2012)

    Google Scholar 

  66. T.K. Pathak, E. Coetsee-Hugo, H.C. Swart, C.W. Swart, R.E. Kroon, Mater. Sci. Eng., B 261, 114780 (2020)

    Article  Google Scholar 

  67. S.K. Pillai, L.M. Sikhwivhilu, T.K. Hillie, Mater. Chem. Phys. 120(2–3), 619 (2010)

    Article  Google Scholar 

  68. I.E. Kolesnikov, D.S. Kolokolov, M.A. Kurochkin, M.A. Voznesenskiy, M.G. Osmolowsky, E. Lähderanta, O.M. Osmolovskaya, J. Alloy. Compd. 822, 153640 (2020)

    Article  Google Scholar 

  69. S. Asaithambi, P. Sakthivel, M. Karuppaiah, G.U. Sankar, K. Balamurugan, R. Yuvakkumar, et al., J. Energy Storage 31, 101530 (2020)

    Google Scholar 

  70. R.A. Nachiar, S. Muthukumaran, Opt. Laser Technol. 112, 458–466 (2019)

    Article  ADS  Google Scholar 

  71. N. Ahmad, S. Khan, J. Alloy. Compd. 720, 502 (2017)

    Article  Google Scholar 

  72. A.S. Ahmed, M.L. Singla, S. Tabassum, A.H. Naqvi, A. Azam, 131(1), 1 (2011)

    Google Scholar 

  73. S. Rani, S.C. Roy, N. Karar, M.C. Bhatnagar, Solid State Commun. 141(4), 214 (2007)

    Article  ADS  Google Scholar 

  74. L.J. Li, K. Yu, H.B. Mao, Z.Q. Zhu, Appl. Phys. A 99(4), 865 (2010)

    Article  ADS  Google Scholar 

  75. J. Ding, X. Yan, J. Li, B. Shen, J. Yang, J. Chen, Q. Xue, ACS Appl. Mater. Interfaces 3(11), 4299 (2011)

    Article  Google Scholar 

  76. I.I. Gontia, M. Baibarac, I. Baltog, Phys. Status Solidi (B) 248(6), 1494 (2011)

    Google Scholar 

  77. R.A. Zargar, M.A. Bhat, I.R. Parrey, M. Arora, J. Kumar, A.K. Hafiz, Optik 127(17), 6997 (2016)

    Article  ADS  Google Scholar 

  78. F. Gu, S.F. Wang, M.K. Lü, G.J. Zhou, D. Xu, D.R. Yuan, J. Phys. Chem. B 108(24), 8119 (2004)

    Article  Google Scholar 

  79. Y. Cao, J. Cao, J. Liu, M. Zheng, K. Shen, Chem. Lett. 36(2), 254 (2007)

    Article  Google Scholar 

Download references

Acknowledgements

The authors are thankful to Haryana State Council Science and Technology for extending financial assistance vide letter no. HSCSIT/R&D/2021/2933 for carrying out this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rashi Gupta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Verma, R., Goel, S., Kant, K., Kumar, R., Gupta, R. (2023). SnO2 Based Phosphors Materials: Synthesis, Characterization, and Applications. In: Kumar, V., Sharma, V., Swart, H.C. (eds) Advanced Materials for Solid State Lighting. Progress in Optical Science and Photonics, vol 25. Springer, Singapore. https://doi.org/10.1007/978-981-99-4145-2_7

Download citation

Publish with us

Policies and ethics