Skip to main content

Luminescence Properties of Rare-Earth-Doped CaO Phosphors

  • Chapter
  • First Online:
Advanced Materials for Solid State Lighting

Part of the book series: Progress in Optical Science and Photonics ((POSP,volume 25))

  • 284 Accesses

Abstract

Properties such as cost-effectiveness, strong luminescent emission, low toxicity, and a better substrate for doping of rare-earth (RE) ions have made CaO material one of the various host materials employed for various applications, including ceramics, catalysis, deep-UV LEDs, and warm white LEDs. The main focus of this chapter is on the different synthesis techniques used for the fabrication of CaO phosphor and their effect on its optical properties. Further, this chapter provides significant detail about the various types of dopants used in the CaO matrix to enhance its optical and structural properties, along with providing efficient energy transfer to the activator ions. In this study, we focused on the use of RE dopants in the framework of CaO phosphors. All such dopants use different types of excitation wavelengths to stimulate the emission of photons, mostly in the visible region of the electromagnetic spectrum. The emission wavelength from various activator centers as well as the electronic transition responsible for the generation of a particular wavelength has also been mentioned.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. M. Inokuti, Radiation physics, in Springer Handbook of Atomic, Molecular, and Optical Physics (Springer New York, New York, NY, 2006), pp. 1389–1399. https://doi.org/10.1007/978-0-387-26308-3_92

  2. C.A. Munson, J.L. Gottfried, F.C. De Lucia, K.L. McNesby, A.W. Miziolek, Laser-based detection methods of explosives, in Counterterrorist Detection Techniques of Explosives (Elsevier, 2007), pp. 279–321. https://doi.org/10.1016/B978-044452204-7/50029-8

  3. J. de Paula, P. Atkins, Physical chemistry. Med. J. Aust. 2, 692–692 (1935). https://doi.org/10.5694/j.1326-5377.1935.tb43364.x

  4. M. Malkamäki, A.J.J. Bos, P. Dorenbos, M. Lastusaari, L.C.V. Rodrigues, H.C. Swart, J. Hölsä, Persistent luminescence excitation spectroscopy of BaAl2O4:Eu2+, Dy3+. Phys. B Condens. Matter. 593, 411947 (2020). https://doi.org/10.1016/j.physb.2019.411947

    Article  Google Scholar 

  5. A.D. Sontakke, J.M. Mouesca, V. Castaing, A. Ferrier, M. Salaün, I. Gautier-Luneau, V. Maurel, A. Ibanez, B. Viana, Time-gated triplet-state optical spectroscopy to decipher organic luminophores embedded in rigid matrices. Phys. Chem. Chem. Phys. 20, 23294–23300 (2018). https://doi.org/10.1039/c8cp03952f

    Article  Google Scholar 

  6. R. Polat, R. Demirboʇa, W.H. Khushefati, Effects of nano and micro size of CaO and MgO, nano-clay and expanded perlite aggregate on the autogenous shrinkage of mortar. Constr. Build. Mater. 81, 268–275 (2015)

    Article  Google Scholar 

  7. C. Pandurangappa, B.N.N. Lakshminarasappa, Optical studies of samarium-doped fluoride nanoparticles. Philos. Mag. 91, 4486–4494 (2011). https://doi.org/10.1080/14786435.2011.610376

    Article  ADS  Google Scholar 

  8. J. Janek, M. Sołtys, L. Żur, E. Pietrasik, J. Pisarska, W.A. Pisarski, Luminescence investigations of rare earth doped lead-free borate glasses modified by MO (M = Ca, Sr, Ba). Mater. Chem. Phys. 180, 237–243 (2016). https://doi.org/10.1016/J.MATCHEMPHYS.2016.06.001

    Article  Google Scholar 

  9. I. Koseva, V. Nikolov, P. Tzvetkov, M. Gancheva, P. Ivanov, P. Petrova, R. Tomova, Glass formation and glass ceramics in the system CaO-GeO2-Li2O-B2O3-Re2O3 (Re=Eu3+, Tb3+, Dy3+). J. Non. Cryst. Solids. 552 (2021). https://doi.org/10.1016/j.jnoncrysol.2020.120442

  10. R.K. Singh, Z. Chen, D. Kumar, K. Cho, M. Ollinger, Critical issues in enhancing brightness in thin film phosphors for flat-panel display applications. Appl. Surf. Sci. 197–198, 321–324 (2002). https://doi.org/10.1016/S0169-4332(02)00390-2

    Article  ADS  Google Scholar 

  11. J. Deng, H. Zhang, X. Zhang, M.S. Molokeev, J. Qiu, Y. Liu, B. Lei, L. Ma, X. Wang, Enhanced luminescence performance of CaO:Ce3+, Li+, F phosphor and its phosphor-in-glass based high-power warm LED properties. J. Mater. Chem. C 6, 4077–4086 (2018). https://doi.org/10.1039/C8TC00813B

    Article  Google Scholar 

  12. E. Song, J. Wang, S. Ye, X.B. Yang, M. Peng, Q. Zhang, L. Wondraczek, Wavelength-tunability and multiband emission from single-site Mn2+ doped CaO through antiferromagnetic coupling and tailored superexchange reactions. Adv. Opt. Mater. 5 (2017). https://doi.org/10.1002/ADOM.201700070

  13. Z. Hao, Y. Wang, L. Zhang, G. Pan, X. Zhang, H. Wu, Y. Luo, J. Zhang, Synthesis and photoluminescence properties of Eu2+ activated CaO ceramic powders for near-ultraviolet chip based white light emitting diodes. Opt. Mater. (Amst) 71, 1–4 (2017). https://doi.org/10.1016/j.optmat.2017.03.051

    Article  ADS  Google Scholar 

  14. J.-Y. Kuang, Y.-L. Liu, et al., Long-lasting phosphorescence of Tb3+ doped MO (M = Ca, Sr). Chinese J. Inorg. Chem. 1383–1385 (2005). https://www.researchgate.net/publication/282315662_Long_lasting_phosphorescence_of_Tb3_doped_MO_MCaSr

  15. Z. Hao, X. Zhang, Y. Luo, L. Zhang, H. Zhao, J. Zhang, Enhanced Ce3+ photoluminescence by Li+ co-doping in CaO phosphor and its use in blue-pumped white LEDs. J. Lumin. 140, 78–81 (2013). https://doi.org/10.1016/j.jlumin.2013.03.013

    Article  Google Scholar 

  16. Q. Zhao, B. Qian, Y. Wang, T. Duan, H. Zou, Y. Song, Y. Sheng, Facile synthesis of CaO:Eu3+ and comparative study on the luminescence properties of CaO:Eu3+ and CaCO3:Eu3+. J. Lumin. 241, 118491 (2022). https://doi.org/10.1016/j.jlumin.2021.118491

    Article  Google Scholar 

  17. L. Feng, Z. Hao, X. Zhang, L. Zhang, G. Pan, Y. Luo, L. Zhang, H. Zhao, J. Zhang, Red emission generation through highly efficient energy transfer from Ce3+ to Mn2+ in CaO for warm white LEDs. Dalt. Trans. 45, 1539–1545 (2016). https://doi.org/10.1039/C5DT04341G

    Article  Google Scholar 

  18. P.M. Jaffe, E. Banks, Oxidation states of europium in the alkaline earth oxide and sulfide phosphors. J. Electrochem. Soc. 102, 518 (1955). https://doi.org/10.1149/1.2430139/XML

    Article  Google Scholar 

  19. C.E. Huang, X. Lu, M. Lu, Y. Huan, Effect of CaO/SnO2 additives on the microstructure and microwave dielectric properties of SrTiO3-LaAlO3 ceramics. Ceram. Int. 43, 10624–10627 (2017). https://doi.org/10.1016/J.CERAMINT.2017.05.084.

  20. S.M. Salman, S.N. Salama, H.A. Abo-Mosallam, Contributions of CaO and SrO in crystallization and properties of some glasses based on stoichiometric tetra-silicic fluoromica. Ceram. Int. 12, 9424–9430 (2017). https://doi.org/10.1016/J.CERAMINT.2017.04.116

    Article  Google Scholar 

  21. P.-L. Boey, G.P. Maniam, S.A. Hamid, Performance of calcium oxide as a heterogeneous catalyst in biodiesel production: a review. Chem. Eng. J. 168, 15–22 (2011). https://www.academia.edu/4390499/Performance_of_calcium_oxide_as_a_heterogeneous_catalyst_in_biodiesel_production_A_review. Accessed 1 Jan 2023

  22. W. Lehmann, Calcium oxide phosphors. J. Lumin. 6, 455–470 (1973). https://doi.org/10.1016/0022-2313(73)90014-8

    Article  Google Scholar 

  23. A. Yousif, R.E. Kroon, E. Coetsee, O.M. Ntwaeaborwa, H.A. Seed Ahmed, H.C. Swart, Luminescence and electron degradation properties of Bi doped CaO phosphor. Appl. Surf. Sci. 356, 1064–1069 (2015). https://doi.org/10.1016/j.apsusc.2015.08.210

  24. D. Prakash, K.R. Nagabhushana, Thermoluminescence properties of gamma irradiated CaO: Sm3+ phosphor. Nucl. Instrum. Methods Phys. Res. Sect. B: Beam Interact. Mater. At. 379, 136–140 (2016). https://doi.org/10.1016/j.nimb.2016.03.055

  25. Y. Jin, Y. Hu, L. Chen, X. Wang, G. Ju, Z. Mou, F. Liang, Luminescence properties of a novel orange emission long persistent phosphor CaO:Sm3+. Opt. Commun. 311, 266–269 (2013). https://doi.org/10.1016/j.optcom.2013.08.086

    Article  ADS  Google Scholar 

  26. A. Ali, H. Zafar, M. Zia, I. ul Haq, A.R. Phull, J.S. Ali, A. Hussain, Synthesis, characterization, applications, and challenges of iron oxide nanoparticles. Nanotechnol. Sci. Appl. 9, 49 (2016). https://doi.org/10.2147/NSA.S99986

  27. S. Laurent, D. Forge, M. Port, A. Roch, C. Robic, L. Vander Elst, R.N. Muller, Erratum: magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications (Chemical Reviews (2008) 108 (2064)). Chem. Rev. 110, 2574 (2010). https://doi.org/10.1021/CR900197G

  28. S.J.H. Soenen, A.R. Brisson, M. De Cuyper, Addressing the problem of cationic lipid-mediated toxicity: the magnetoliposome model. Biomaterials 30, 3691–3701 (2009). https://doi.org/10.1016/j.biomaterials.2009.03.040

    Article  Google Scholar 

  29. S. Wu, A. Sun, F. Zhai, J. Wang, W. Xu, Q. Zhang, A.A. Volinsky, Fe3O4 magnetic nanoparticles synthesis from tailings by ultrasonic chemical co-precipitation. Mater. Lett. 65, 1882–1884 (2011). https://doi.org/10.1016/j.matlet.2011.03.065

    Article  Google Scholar 

  30. G. Salazar-Alvarez, M. Muhammed, A.A. Zagorodni, Novel flow injection synthesis of iron oxide nanoparticles with narrow size distribution. Chem. Eng. Sci. 61, 4625–4633 (2006). https://doi.org/10.1016/j.ces.2006.02.032

    Article  Google Scholar 

  31. E. Kaewnuam, J. Kaewkhao, Synthesis-temperature effect on the luminescence under light and UV excitation of Eu3+ doped lithium lanthanum borate phosphor. Mater. Today Proc. 5, 15086–15091 (2018). https://doi.org/10.1016/J.MATPR.2018.04.062

    Article  Google Scholar 

  32. A.R. West, Solid State Chemistry and its Applications (John Wiley and Sons, 1985). Cryst. Res. Technol. 21, 166–166 (1986). https://doi.org/10.1002/crat.2170210140

  33. Y. Tan, Y. Liu, Z. Zhang, M. Hofmann, L. Grover, Comparing three methods for the synthesis of pure ß-dicalcium silicate, in 2010 4th Int. Conf. Bioinforma. Biomed. Eng. ICBBE 2010 (2010). https://doi.org/10.1109/ICBBE.2010.5515290

  34. H. Guo, H. Zhang, J. Li, F. Li, Blue-white-green tunable luminescence from Ba2Gd2Si4O13:Ce3+, Tb3+ phosphors excited by ultraviolet light. Opt. Express 18, 27257 (2010). https://doi.org/10.1364/oe.18.027257

    Article  ADS  Google Scholar 

  35. N. Taghavinia, G. Lerondel, H. Makino, T. Yao, Europium-doped yttrium silicate nanoparticles embedded in a porous SiO2 matrix. Nanotechnology 15, 1549 (2004). https://doi.org/10.1088/0957-4484/15/11/031

    Article  ADS  Google Scholar 

  36. L.Y. Bao, W. Gao, Y.F. Su, Z. Wang, N. Li, S. Chen, F. Wu, Progression of the silicate cathode materials used in lithium ion batteries. Chin. Sci. Bull. 58, 575–584 (2012). https://doi.org/10.1007/S11434-012-5583-3

  37. D. Kim, H.E. Kim, C.H. Kim, Enhancement of long-persistent phosphorescence by solid-state reaction and mixing of spectrally different phosphors. ACS Omega 5, 10909–10918 (2020). https://doi.org/10.1021/acsomega.0c00620

    Article  Google Scholar 

  38. J.L. Wang, E.H. Song, M. Wu, W.B. Dai, X.F. Jiang, B. Zhou, Q.Y. Zhang, Room-temperature green to orange color-tunable upconversion luminescence from Yb3+/Mn2+ co-doped CaO. J. Mater. Chem. C 4, 10154–10160 (2016). https://doi.org/10.1039/C6TC02773C

    Article  Google Scholar 

  39. S. Zhao, Y.J. Guo, Q. Wang, X.L. Li, The preparation of CaO: Dy3+, Na+ rare phosphor by high Sofid-state method. Adv. Mater. Res. 774–776, 599–602 (2013). https://doi.org/10.4028/www.scientific.net/AMR.774-776.599

    Article  Google Scholar 

  40. Y. Jin, Y. Hu, L. Chen, X. Wang, Z. Mou, G. Ju, F. Liang, Luminescent properties of a reddish orange emitting long-lasting phosphor CaO:Pr3+. Mater. Sci. Eng. B 178, 1205–1211 (2013). https://doi.org/10.1016/j.mseb.2013.07.009

    Article  Google Scholar 

  41. Z. Hao, X. Zhang, X. Wang, J. Zhang, Photoluminescence properties of CaO:Ce3+, Na+, a non-garnet yellow-emitting phosphor under blue light excitation. Mater. Lett. 68, 443–445 (2012). https://doi.org/10.1016/j.matlet.2011.10.102

    Article  Google Scholar 

  42. K. Petcharoen, A. Sirivat, Synthesis and characterization of magnetite nanoparticles via the chemical co-precipitation method. Mater. Sci. Eng. B 177, 421–427 (2012). https://doi.org/10.1016/J.MSEB.2012.01.003

    Article  Google Scholar 

  43. M. Kang, G. Yin, J. Liu, D. Yang, R. Sun, Synthesis and luminescence properties of red phosphor CaO: Eu3+. J. Wuhan Univ. Technol. Mater. Sci. Ed. 24, 20–24 (2009). https://doi.org/10.1007/s11595-009-1020-0

    Article  Google Scholar 

  44. M. Kang, X. Liao, Y. Kang, J. Liu, R. Sun, G. Yin, Z. Huang, Y. Yao, Preparation and properties of red phosphor CaO: Eu3+. J. Mater. Sci. 44, 2388–2392 (2009). https://doi.org/10.1007/s10853-009-3298-x

    Article  ADS  Google Scholar 

  45. Y. Li, B. You, W. Zhang, M. Yin, Luminescent properties of β-Lu2Si2O7:RE3+ (RE = Ce, Tb) nanoparticles by sol–gel method. J. Rare Earths 26, 455–458 (2008). https://doi.org/10.1016/S1002-0721(08)60117-9

    Article  Google Scholar 

  46. S. Célérier, C. Laberty, F. Ansart, P. Lenormand, P. Stevens, New chemical route based on sol–gel process for the synthesis of oxyapatite La9.33Si6O26. Ceram. Int. 32, 271–276 (2006). https://doi.org/10.1016/J.CERAMINT.2005.03.001

  47. P. Głuchowski, W. Stręk, M. Lastusaari, J. Hölsä, Optically stimulated persistent luminescence of europium-doped LaAlO3 nanocrystals. Phys. Chem. Chem. Phys. 17, 17246–17252 (2015). https://doi.org/10.1039/c5cp00234f

    Article  Google Scholar 

  48. N. Basavaraju, K.R. Priolkar, D. Gourier, A. Bessière, B. Viana, Order and disorder around Cr3+ in chromium doped persistent luminescent AB2O4 spinels. Phys. Chem. Chem. Phys. 17, 10993–10999 (2015). https://doi.org/10.1039/C5CP01097G

    Article  Google Scholar 

  49. B.G. Rao, D. Mukherjee, B.M. Reddy, Novel approaches for preparation of nanoparticles, in Nanostructures for Novel Therapy (2017), pp. 1–36. https://doi.org/10.1016/B978-0-323-46142-9.00001-3

  50. A. Yousif, R.M. Jafer, S. Som, M.M. Duvenhage, E. Coetsee, H.C. Swart, Ultra-broadband luminescent from a Bi doped CaO matrix. RSC Adv. 5, 54115–54122 (2015). https://doi.org/10.1039/c5ra09246a

    Article  ADS  Google Scholar 

  51. F. Deganello, G. Marcì, G. Deganello, Citrate–nitrate auto-combustion synthesis of perovskite-type nanopowders: a systematic approach. J. Eur. Ceram. Soc. 29, 439–450 (2009). https://doi.org/10.1016/J.JEURCERAMSOC.2008.06.012

    Article  Google Scholar 

  52. S.L. González-Cortés, F.E. Imbert, Fundamentals, properties and applications of solid catalysts prepared by solution combustion synthesis (SCS). Appl. Catal. A Gen. 452, 117–131 (2013). https://doi.org/10.1016/J.APCATA.2012.11.024

    Article  Google Scholar 

  53. H.H. Nersisyan, J.H. Lee, J.R. Ding, K.S. Kim, K.V. Manukyan, A.S. Mukasyan, Combustion synthesis of zero-, one-, two- and three-dimensional nanostructures: current trends and future perspectives. Prog. Energy Combust. Sci. 63, 79–118 (2017). https://doi.org/10.1016/J.PECS.2017.07.002

    Article  Google Scholar 

  54. F. Deganello, L.F. Liotta, G. Marcì, M. Marcì, E. Fabbri, E. Traversa, Strontium and iron-doped barium cobaltite prepared by solution combustion synthesis: exploring a mixed-fuel approach for tailored intermediate temperature solid oxide fuel cell cathode materials. Mater. Renew. Sustain. Energy 2, 1–14 (2013). https://doi.org/10.1007/S40243-013-0008-Z

  55. A. Subramania, N. Angayarkanni, T. Vasudevan, Effect of PVA with various combustion fuels in sol–gel thermolysis process for the synthesis of LiMn2O4 nanoparticles for Li-ion batteries. Mater. Chem. Phys. 102, 19–23 (2007). https://doi.org/10.1016/J.MATCHEMPHYS.2006.10.004

    Article  Google Scholar 

  56. R.A. Adams, V.G. Pol, A. Varma, Tailored solution combustion synthesis of high performance ZnCo2O4 anode materials for lithium-ion batteries. Ind. Eng. Chem. Res. 56, 7173–7183 (2017). https://doi.org/10.1021/ACS.IECR.7B00295/SUPPL_FILE/IE7B00295_SI_001.PDF

    Article  Google Scholar 

  57. F. Deganello, Nanomaterials for environmental and energy applications prepared by solution combustion based-methodologies: Role of the fuel. Mater. Today Proc. 4, 5507–5516 (2017). https://doi.org/10.1016/J.MATPR.2017.06.006

    Article  Google Scholar 

  58. G.B. Nair, H.C. Swart, S.J. Dhoble, A review on the advancements in phosphor-converted light emitting diodes (pc-LEDs): phosphor synthesis, device fabrication and characterization. Prog. Mater. Sci. 100622 (2019). https://doi.org/10.1016/j.pmatsci.2019.100622

  59. V. Kumar, H.C. Swart, O.M. Ntwaeaborwa, R.E. Kroon, J.J. Terblans, S.K.K. Shaat, A. Yousif, M.M. Duvenhage, Origin of the red emission in zinc oxide nanophosphors. Mater. Lett. 101, 57–60 (2013). https://doi.org/10.1016/J.MATLET.2013.03.073

    Article  Google Scholar 

  60. B. Marí, K.C. Singh, M. Moya, I. Singh, H. Om, S. Chand, Characterization and photoluminescence properties of some CaO, SrO and CaSrO2 phosphors co-doped with Eu3+ and alkali metal ions. Opt. Mater. (Amst) 34, 1267–1271 (2012). https://doi.org/10.1016/j.optmat.2012.01.032

    Article  ADS  Google Scholar 

  61. S. Ekambaram, K.C. Patil, Synthesis and properties of Eu2+ activated blue phosphors. J. Alloys Compd. 248, 7–12 (1997). https://doi.org/10.1016/S0925-8388(96)02622-9

    Article  Google Scholar 

  62. G. Swati, D. Bidwai, D. Haranath, Red emitting CaTiO3:Pr3+ nanophosphors for rapid identification of high contrast latent fingerprints. Nanotechnology 31, 364007 (2020). https://doi.org/10.1088/1361-6528/AB93EE

    Article  Google Scholar 

  63. Y. Lin, Z. Tang, Z. Zhang, C.W. Nan, Luminescence of Eu2+ and Dy3+ activated R3MgSi2O8-based (R = Ca, Sr, Ba) phosphors. J. Alloys Compd. 348, 76–79 (2003). https://doi.org/10.1016/S0925-8388(02)00796-X

    Article  Google Scholar 

  64. V.B. Mikhailik, VUV sensitization of Mn2+ emission by Tb3+ in strontium aluminate phosphor. Mater. Lett. 63, 803–805 (2009). https://doi.org/10.1016/J.MATLET.2009.01.011

    Article  Google Scholar 

  65. T. Aitasalo, A. Durygin, J. Hölsä, M. Lastusaari, J. Niittykoski, A. Suchocki, Low temperature thermoluminescence properties of Eu2+ and R3+ doped CaAl2O4. J. Alloys Compd. 380, 4–8 (2004). https://doi.org/10.1016/J.JALLCOM.2004.03.007

    Article  Google Scholar 

  66. E.F. Huerta, J. De Anda, I. Martínez-Merlin, U. Caldiño, C. Falcony, Near-infrared luminescence spectroscopy in yttrium oxide phosphor activated with Er3+, Li+ and Yb3+ ions for application in photovoltaic systems. J. Lumin. 224 (2020). https://doi.org/10.1016/j.jlumin.2020.117271

  67. J. Silver, T.G. Ireland, R. Withnall, Facile method of infilling photonic silica templates with rare earth element oxide phosphor precursors. J. Mater. Res. 19, 1656–1661 (2004). https://doi.org/10.1557/JMR.2004.0212

    Article  ADS  Google Scholar 

  68. D. Poelman, J.E. Van Haecke, P.F. Smet, Advances in sulfide phosphors for displays and lighting. J. Mater. Sci. Mater. Electron. 20, 134–138 (2009). https://doi.org/10.1007/s10854-007-9466-3

    Article  Google Scholar 

  69. J. Du, D. Poelman, Red-light-activated red-emitting persistent luminescence for multicycle bioimaging: a case study of CaS:Eu2+, Dy3+. J. Phys. Chem. C 124, 16586–16595 (2020). https://doi.org/10.1021/acs.jpcc.0c04875

  70. C. Bocker, A. Herrmann, P. Loch, C. Rüssel, The nano-crystallization and fluorescence of terbium doped Na2O/K2O/CaO/CaF2/Al2O3/SiO2 glasses. J. Mater. Chem. C 3, 2274–2281 (2015). https://doi.org/10.1039/C4TC02858A

    Article  Google Scholar 

  71. N. Golego, S.A. Studenikin, M. Cocivera, Thin-film BaMgAl10O17:Eu phosphor prepared by spray pyrolysis. J. Electrochem. Soc. 147, 1993 (2000). https://doi.org/10.1149/1.1393473

    Article  ADS  Google Scholar 

  72. P. Dorenbos, 5d-level energies of Ce3+ and the crystalline environment. I. Fluoride compounds. Phys. Rev. B—Condens. Matter Mater. Phys. 62, 15640–15649 (2000). https://doi.org/10.1103/PhysRevB.62.15640

  73. D. Deng, S. Xu, X. Su, Q. Wang, Y. Li, G. Li, Y. Hua, L. Huang, S. Zhao, H. Wang, C. Li, Long wavelength Ce3+ emission in Y6Si3O9N4 phosphors for white-emitting diodes. Mater. Lett. 65, 1176–1178 (2011). https://doi.org/10.1016/J.MATLET.2011.01.031

    Article  Google Scholar 

  74. P. Dorenbos, 5d-level energies of Ce3+ and the crystalline environment. IV. Aluminates and “simple” oxides. J. Lumin. 99, 283–299 (2002). https://doi.org/10.1016/S0022-2313(02)00347-2

  75. H. Lin, H. Liang, B. Han, J. Zhong, Q. Su, P. Dorenbos, M.D. Birowosuto, G. Zhang, Y. Fu, W. Wu, Luminescence and site occupancy of Ce3+ in Ba2Ca(BO3)2. Phys. Rev. B—Condens. Matter Mater. Phys. 76, 035117 (2007). https://doi.org/10.1103/PHYSREVB.76.035117/FIGURES/10/MEDIUM

  76. M. Kottaisamy, P. Thiyagarajan, J. Mishra, M.S. Ramachandra Rao, Color tuning of Y3Al5O12:Ce phosphor and their blend for white LEDs. Mater. Res. Bull. 43, 1657–1663 (2008). https://doi.org/10.1016/J.MATERRESBULL.2007.09.005

  77. S. Nakamura, G. Fasol, The blue laser diode: GaN based light emitters and lasers (2013)

    Google Scholar 

  78. P. Schlotter, J. Baur, C. Hielscher, M. Kunzer, H. Obloh, R. Schmidt, J. Schneider, Fabrication and characterization of GaN/InGaN/AlGaN double heterostructure LEDs and their application in luminescence conversion LEDs. Mater. Sci. Eng. B Solid-State Mater. Adv. Technol. 59 390–394 (1999). https://doi.org/10.1016/S0921-5107(98)00352-3

  79. K.S. Shim, H.K. Yang, Y.R. Jeong, B.K. Moon, B.C. Choi, J.H. Jeong, J.S. Bae, S.S. Yi, J.H. Kim, Enhanced luminescent characteristics of laser-ablated GdVO4:Eu3+ thin films by Li-doping. Appl. Surf. Sci. 253, 8146–8150 (2007). https://doi.org/10.1016/j.apsusc.2007.02.078

    Article  ADS  Google Scholar 

  80. J.S. Bae, S.B. Kim, J.H. Jeong, J.C. Park, D.K. Kim, S.H. Byeon, S.S. Yi, Photoluminescence characteristics of Li-doped Y2O3:Eu3+ thin film phosphors. Thin Solid Films 471, 224–229 (2005). https://doi.org/10.1016/j.tsf.2004.05.133

    Article  ADS  Google Scholar 

  81. J. Fu, Orange and red emitting long-lasting phosphors MO:Eu3+ (M = Ca, Sr, Ba). Electrochem. Solid-State Lett. 3, 350 (1999). https://doi.org/10.1149/1.1391146

    Article  Google Scholar 

  82. M. Kang, W. Yan, J. Liu, J. Liu, R. Sun, Combustion synthesis and luminescent properties of CaO:Eu3+, M+ (M = Li, Na, K) phosphor. J. Wuhan Univ. Technol. Mater. Sci. Ed. 25, 179–183 (2010). https://doi.org/10.1007/s11595-010-2179-0

    Article  Google Scholar 

  83. X. Gao, L. Lei, C. Lv, Y. Sun, H. Zheng, Y. Cui, Preparation and photoluminescence property of a loose powder, Ca3Al2O6:Eu3+ by calcination of a layered double hydroxide precursor. J. Solid State Chem. 181, 1776–1781 (2008). https://doi.org/10.1016/J.JSSC.2008.03.025

    Article  ADS  Google Scholar 

  84. N. Yamashita, Coexistence of the Eu2+ and Eu3+ centers in the CaO:Eu powder phosphor. J. Electrochem. Soc. 140, 840–843 (1993). https://doi.org/10.1149/1.2056169

    Article  ADS  Google Scholar 

  85. J.B. Bates, R.F. Wood, High temperature luminescence spectra from F-centers in CaO. Solid State Commun. 17, 201–203 (1975). https://doi.org/10.1016/0038-1098(75)90042-3

    Article  ADS  Google Scholar 

  86. T. Witoon, S. Bumrungsalee, P. Vathavanichkul, S. Palitsakun, M. Saisriyoot, K. Faungnawakij, Biodiesel production from transesterification of palm oil with methanol over CaO supported on bimodal meso-macroporous silica catalyst. Bioresour. Technol. 156, 329–334 (2014). https://doi.org/10.1016/J.BIORTECH.2014.01.076

    Article  Google Scholar 

  87. S. Ye, J. Zhang, X. Zhang, S. Lu, X. Ren, X.J. Wang, Mn2+ activated red phosphorescence in BaMg2Si2O7:Mn2+, Eu2+, Dy3+ through persistent energy transfer. J. Appl. Phys. 101, 063545 (2007). https://doi.org/10.1063/1.2714498

    Article  ADS  Google Scholar 

  88. T. Matsuzawa, Y. Aoki, N. Takeuchi, Y. Murayama, A new long phosphorescent phosphor with high brightness, SrAl2O4:Eu2+, Dy3+. J. Electrochem. Soc. 143, 2670–2673 (1996). https://doi.org/10.1149/1.1837067

    Article  ADS  Google Scholar 

  89. H. Yamamoto, T. Matsuzawa, Mechanism of long phosphorescence of SrAl2O4:Eu2+, Dy3+ and CaAl2O4:Eu2+, Nd3+. J. Lumin. 72–74, 287–289 (1997). https://doi.org/10.1016/S0022-2313(97)00012-4

    Article  Google Scholar 

  90. W. Pan, G. Ning, X. Zhang, J. Wang, Y. Lin, J. Ye, Enhanced luminescent properties of long-persistent Sr2MgSi2O7:Eu2+, Dy3+ phosphor prepared by the co-precipitation method. J. Lumin. 128, 1975–1979 (2008). https://doi.org/10.1016/J.JLUMIN.2008.06.009

    Article  Google Scholar 

  91. H. Bettentrup, J. Hölsä, T. Laamanen, M. Lastusaari, M. Malkamäki, J. Niittykoski, E. Zych, Effect of Mg2+ and Ti(IV) doping on the luminescence of Y2O3:Eu3+. J. Lumin. 129, 1661–1663 (2009). https://doi.org/10.1016/j.jlumin.2009.04.057

    Article  Google Scholar 

  92. M. Serda, F.G. Becker, M. Cleary, R.M. Team, et al., About red afterglow in Pr3+ doped titanate perovskites. J. Phys. D. Appl. Phys. 42, 45106–45107 (2009)

    Google Scholar 

  93. Z. Ju, R. Wei, J. Zheng, X. Gao, S. Zhang, W. Liu, Synthesis and phosphorescence mechanism of a reddish orange emissive long afterglow phosphor Sm3+-doped Ca2SnO4. Appl. Phys. Lett. 98, 121906 (2011). https://doi.org/10.1063/1.3567511

    Article  ADS  Google Scholar 

  94. K. Van den Eeckhout, P.F. Smet, D. Poelman, Luminescent afterglow behavior in the M2Si5N8:Eu family (M = Ca, Sr, Ba). Materials 4, 980–990 (2011). https://doi.org/10.3390/MA4060980

  95. Z.H. Ju, S.H. Zhang, X.P. Gao, X.L. Tang, W.S. Liu, Reddish orange long afterglow phosphor Ca2SnO4:Sm3+ prepared by sol–gel method. J. Alloys Compd. 509, 8082–8087 (2011). https://doi.org/10.1016/J.JALLCOM.2011.05.050

    Article  Google Scholar 

  96. Z. Hong, P. Zhang, X. Fan, M. Wang, Eu3+ red long afterglow in Y2O2S:Ti, Eu phosphor through afterglow energy transfer. J. Lumin. 124, 127–132 (2007). https://doi.org/10.1016/J.JLUMIN.2006.02.008

    Article  Google Scholar 

  97. F. Li, F. Wang, X. Hu, B. Zheng, J. Du, D. Xiao, A long-persistent phosphorescent chemosensor for the detection of TNP based on CaTiO3:Pr3+@SiO2 photoluminescence materials. RSC Adv. 8, 16603–16610 (2018). https://doi.org/10.1039/C8RA02665C

    Article  ADS  Google Scholar 

  98. R. Piramidowicz, I. Pracka, W. Wolinski, M. Malinowski, Blue-green emission of Pr3+ ions in LiNbO3. J. Phys. Condens. Matter. 12, 709–718 (2000). https://doi.org/10.1088/0953-8984/12/5/317

    Article  ADS  Google Scholar 

  99. D.J. Gargas, E.M. Chan, A.D. Ostrowski, S. Aloni, M. Virginia, P. Altoe, E.S. Barnard, B. Sanii, J.J. Urban, D.J. Milliron, B.E. Cohen, P.J. Schuck, M.V.P. Altoe, E.S. Barnard, B. Sanii, J.J. Urban, D.J. Milliron, B.E. Cohen, P.J. Schuck, Engineering bright sub-10-nm upconverting nanocrystals for single-molecule imaging. Nat. Nanotechnol. 9, 300–305 (2014). https://www.nature.com/articles/nnano.2014.29

  100. Y. Lu, J. Zhao, R. Zhang, Y. Liu, D. Liu, E.M. Goldys, X. Yang, P. Xi, A. Sunna, J. Lu, Y. Shi, R.C. Leif, Y. Huo, J. Shen, J.A. Piper, J.P. Robinson, D. Jin, Tunable lifetime multiplexing using luminescent nanocrystals. Nat. Photonics 8, 32–36 (2014). https://doi.org/10.1038/nphoton.2013.322

    Article  ADS  Google Scholar 

  101. R. Deng, F. Qin, R. Chen, W. Huang, M. Hong, X. Liu, Temporal full-colour tuning through non-steady-state upconversion. Nat. Nanotechnol. 10, 237–242 (2015). https://www.nature.com/articles/nnano.2014.317

  102. E. Downing, L. Hesselink, J. Ralston, R. Macfarlane, A three-color, solid-state, three-dimensional display. Science 273, 1185–1189 (1996). https://doi.org/10.1126/science.273.5279.1185

  103. M. Haase, H. Schäfer, Upconverting nanoparticles. Angew. Chem.—Int. Ed. 50, 5808–5829 (2011). https://doi.org/10.1002/anie.201005159

    Article  Google Scholar 

  104. B. Zhou, B. Shi, D. Jin, X. Liu, Controlling upconversion nanocrystals for emerging applications. Nat. Nanotechnol. 10, 924–936 (2015). https://doi.org/10.1038/nnano.2015.251

    Article  ADS  Google Scholar 

  105. I. Etchart, M. Be, W.P. Gillin, J. Curry, A.K. Cheetham, Efficient white light emission by upconversion in Yb3+-, Er3+-doped Y2BaZnO5. ChemComm 6263–6265 (2011). https://pubs.rsc.org/en/content/articlehtml/2011/cc/c1cc11427a

  106. L.W. Yang, H.L. Han, Y.Y. Zhang, J.X. Zhong, White emission by frequency up-conversion in Yb3+-Ho3+-Tm3+ triply doped hexagonal NaYF4 nanorods. J. Phys. Chem. C 113, 18995–18999 (2009). https://doi.org/10.1021/JP9021689/ASSET/IMAGES/MEDIUM/JP-2009-021689_0006.GIF

    Article  Google Scholar 

  107. H. Wang, W. Lu, Z. Yi, L. Rao, S. Zeng, Z. Li, Enhanced upconversion luminescence and single-band red emission of NaErF4 nanocrystals via Mn2+ doping. J. Alloys Compd. 618, 776–780 (2015). https://doi.org/10.1016/J.JALLCOM.2014.08.174

    Article  Google Scholar 

  108. X. Gao, X. Liu, Q. Wen, X. Yang, S. Xiao, Enhancement of 1.5 μm emission in Ce3+/Li+-codoped YPO4:Yb3+, Er3+ phosphor. J. Appl. Phys. 116 (2014). https://doi.org/10.1063/1.4900990

  109. W. Gao, R. Wang, Q. Han, J. Dong, L. Yan, H. Zheng, Tuning red upconversion emission in single LiYF4:Yb3+/Ho3+ microparticle. J. Phys. Chem. C 119, 2349–2355 (2015). https://doi.org/10.1021/JP511566H

    Article  Google Scholar 

  110. S. Shionoya, W. Yen, H. Yamamoto, Phosphor Handbook (2018)

    Google Scholar 

  111. A. Yousif, V. Kumar, H.A.A.S. Ahmed, S. Som, L.L. Noto, O.M. Ntwaeaborwa, H.C. Swart, Effect of Ga3+ doping on the photoluminescence properties of Y3Al5−xGaxO12:Bi3+ phosphor. ECS J. Solid State Sci. Technol. 3, R222 (2014). https://doi.org/10.1149/2.0021412JSS

    Article  Google Scholar 

  112. R.J. Xie, N. Hirosaki, T. Suehiro, F.F. Xu, M. Mitomo, A simple, efficient synthetic route to Sr2Si5N8:Eu2+-based red phosphors for white light-emitting diodes. Chem. Mater. 18, 5578–5583 (2006). https://doi.org/10.1021/CM061010N

    Article  Google Scholar 

  113. X. Piao, K.-I. Machida, T. Horikawa, H. Hanzawa, Y. Shimomura, N. Kijima, Preparation of CaAlSiN3:Eu2+ phosphors by the self-propagating high-temperature synthesis and their luminescent properties. ACS Publ. 19, 4592–4599 (2007). https://doi.org/10.1021/cm070623c

    Article  Google Scholar 

  114. Z. Liu, M. Yuwen, J. Liu, C. Yu, T. Xuan, H. Li, Electrospinning, optical properties and white LED applications of one-dimensional CaAl12O19:Mn4+ nanofiber phosphors. Ceram. Int. 43, 5674–5679 (2017). https://doi.org/10.1016/J.CERAMINT.2017.01.105

    Article  Google Scholar 

  115. Z.Y. Mao, Y.C. Zhu, L. Gan, Y. Zeng, F.F. Xu, Y. Wang, H. Tian, J. Li, D.J. Wang, Tricolor emission Ca3Si2O7:Ln (Ln, Ce, Tb, Eu) phosphors for near-UV white light-emitting-diode. J. Lumin. 134, 148–153 (2013). https://doi.org/10.1016/J.JLUMIN.2012.08.057

    Article  Google Scholar 

  116. H.-D. Nguyen, C.C. Lin, R.-S. Liu, Waterproof alkyl phosphate coated fluoride phosphors for optoelectronic materials. Angew. Chem. 127, 11012–11016 (2015). https://doi.org/10.1002/ANGE.201504791

    Article  ADS  Google Scholar 

  117. C.C. Lin, Y.S. Zheng, H.Y. Chen, C.H. Ruan, G.W. Xiao, R.S. Liu, Improving optical properties of white LED fabricated by a blue LED chip with yellow/red phosphors. J. Electrochem. Soc. 157, H900 (2010). https://doi.org/10.1149/1.3465654/XML

    Article  Google Scholar 

  118. A.A. Setlur, V.R. Emil, S.H. Claire, J.-H. Her, M.S. Alok, N. Karkada, M. Satya Kishore, N. Prasanth Kumar, D. Aesram, A. Deshpande, B. Kolodin, S.G. Ljudmil, U. Happek, Energy-efficient, high-color-rendering LED lamps using oxyfluoride and fluoride phosphors. Chem. Mater. 22, 4076–4082 (2010). https://doi.org/10.1021/CM100960G

  119. Y.C. Chiu, W.R. Liu, C.K. Chang, C.C. Liao, Y.T. Yeh, S.M. Jang, T.M. Chen, Ca2PO4Cl:Eu2+: an intense near-ultraviolet converting blue phosphor for white light-emitting diodes. J. Mater. Chem. 20, 1755–1758 (2010). https://doi.org/10.1039/B920610H

    Article  Google Scholar 

  120. P. Li, Z. Wang, Z. Yang, Q. Guo, Incorporating Ce3+ into a high efficiency phosphor Ca2PO4Cl:Eu2+ and its luminescent properties. RSC Adv. 4, 27708–27713 (2014). https://doi.org/10.1039/C4RA03087G

    Article  ADS  Google Scholar 

  121. A. Yousif, R.M. Jafer, S. Som, H.C. Swart, The effect of the host lattice on the optical properties of Bi3+ in Ca1−xO:Bi and Ca1−x(OH)2:Bi phosphors. Appl. Surf. Sci. 433, 155–159 (2018). https://doi.org/10.1016/J.APSUSC.2017.10.004

    Article  ADS  Google Scholar 

  122. R.C. Whited, W.C. Walker, Exciton spectra of CaO and MgO. Phys. Rev. Lett. 22, 1428–1430 (1969). https://doi.org/10.1103/PHYSREVLETT.22.1428

    Article  ADS  Google Scholar 

  123. M.A. Bolorizadeh, V.A. Sashin, A.S. Kheifets, M.J. Ford, Electronic band structure of calcium oxide. J. Electron. Spectrosc. Relat. Phenom. 141, 27–38 (2004). https://doi.org/10.1016/J.ELSPEC.2004.04.004

    Article  Google Scholar 

  124. P.D. Nsimama, O.M. Ntwaeaborwa, H.C. Swart, The effect of different gas atmospheres on luminescent properties of pulsed laser ablated SrAl2O4:Eu2+, Dy3+ thin films. J. Lumin. 131, 119–125 (2011). https://doi.org/10.1016/J.JLUMIN.2010.09.034

    Article  Google Scholar 

  125. A. Yousif, H.C. Swart, O.M. Ntwaeaborwa, Surface state of Y3(Al, Ga)5O12:Tb phosphor under electron beam bombardment. Appl. Surf. Sci. 258, 6495–6503 (2012). https://doi.org/10.1016/J.APSUSC.2012.03.066

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nisar Hussain .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mushtaq, U., Ayoub, I., Hussain, N., Sharma, V., Swart, H.C., Kumar, V. (2023). Luminescence Properties of Rare-Earth-Doped CaO Phosphors. In: Kumar, V., Sharma, V., Swart, H.C. (eds) Advanced Materials for Solid State Lighting. Progress in Optical Science and Photonics, vol 25. Springer, Singapore. https://doi.org/10.1007/978-981-99-4145-2_6

Download citation

Publish with us

Policies and ethics