Skip to main content

Optical and Luminescent Properties of Lanthanide-Doped Strontium Aluminates

  • Chapter
  • First Online:
Advanced Materials for Solid State Lighting

Abstract

After the early discovery of the long-persistent photoluminescent lanthanide-doped strontium aluminates (SrAl2O4: Eu2+, Dy3+) in the late 1990s, scientists have directed their efforts to build up novel persistent phosphors with high stability and improved efficiency. Different features of persistent phosphorescent pigments have been investigated to earmark fitting mechanisms. However, the number of long-persistent luminescent compounds is still very low. In this review, we introduce a comprehensive study on the optical properties of long-persistent photoluminescent lanthanide-doped strontium aluminate phosphors in terms of thermoluminescence, photoluminescence, and afterglow. Additionally, the effects of various factors will be explored, such as surface energy, role of activator, temperature, and dopant concentration. Concurrently, some of our significant findings and future trends in strontium aluminate phosphors are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. X. Dong, Y. Lu, X. Liu, L. Zhang, Y. Tong, Nanostructured tungsten oxide as photochromic material for smart devices, energy conversion, and environmental remediation. J. Photochem. Photobiol. C: Photochem. Rev. 100555 (2022)

    Google Scholar 

  2. Q. Yan, S. Wang, Fusion of aggregation-induced emission and photochromics for promising photoresponsive smart materials. Mater. Chem. Front. 4(11), 3153–3175 (2020)

    Article  Google Scholar 

  3. L. Wang, Y. Liu, X. Zhan, D. Luo, X. Sun, Photochromic transparent wood for photo-switchable smart window applications. J. Mater. Chem. C 7(28), 8649–8654 (2019)

    Article  Google Scholar 

  4. A.-L. Leistner, Z.L. Pianowski, Smart photochromic materials triggered with visible light. Eur. J. Org. Chem. 2022(19), e202101271 (2022)

    Google Scholar 

  5. Y. Qi, J. Fan, Y. Chang, Y. Li, B. Bao, B. Yan, H. Li, P. Cong, Smart photochromic fabric prepared via thiol-ene click chemistry for image information storage applications. Dyes Pigm. 193, 109507 (2021)

    Article  Google Scholar 

  6. A.P. Periyasamy, M. Vikova, M. Vik, A review of photochromism in textiles and its measurement. Text. Prog. 49(2), 53–136 (2017).

    Google Scholar 

  7. H. Li, G. Zhao, M. Zhu, J. Guo, C. Wang, Robust large-sized photochromic photonic crystal film for smart decoration and anti-counterfeiting. ACS Appl. Mater. Interfaces. 14(12), 14618–14629 (2022)

    Article  Google Scholar 

  8. S. Seipel, Y. Junchun, M. Viková, M. Vik, M. Koldinská, A. Havelka, V.A. Nierstrasz, Color performance, durability and handle of inkjet-printed and UV-cured photochromic textiles for multi-colored applications. Fibers Polym. 20(7), 1424–1435 (2019)

    Article  Google Scholar 

  9. J.-L. Zhao, M.-H. Li, Y.-M. Cheng, X.-W. Zhao, X. Ying, Z.-Y. Cao, M.-H. You, M.-J. Lin, Photochromic crystalline hybrid materials with switchable properties: recent advances and potential applications. Coord. Chem. Rev. 475, 214918 (2023)

    Article  Google Scholar 

  10. H. Gao, G. Liu, C. Cui, M. Wang, J. Gao, Preparation and properties of a polyurethane film based on novel photochromic spirooxazine chain extension. New J. Chem. 46(19), 9128–9137 (2022)

    Article  Google Scholar 

  11. S. Kawata, Y. Kawata, Three-dimensional optical data storage using photochromic materials. Chem. Rev. 100(5), 1777–1788 (2000)

    Article  Google Scholar 

  12. B. Wu, Y. Lei, Y. Xiao, Y. Wang, Y. Yuan, L. Jiang, X. Zhang, J. Lei, A bio-inspired and biomass-derived healable photochromic material induced by hierarchical structural design. Macromol. Mater. Eng. 305(1), 1900539 (2020)

    Article  Google Scholar 

  13. N. Heidari Matin, A. Eydgahi, P. Matin, The effect of smart colored windows on visual performance of buildings. Buildings. 12(6), 861 (2022).

    Google Scholar 

  14. T.A. Khattab, M.S. Abdelrahman, From smart materials to chromic textiles, in Advances in Functional Finishing of Textiles (Springer, Singapore, 2020), pp. 257–274.

    Google Scholar 

  15. Y. Zhu, H. Sun, Q. Jia, L. Guan, D. Peng, Q. Zhang, X. Hao, Site-selective occupancy of Eu2+ toward high luminescence switching contrast in BaMgSiO4-based photochromic materials. Adv. Opt. Mater. 9(6), 2001626 (2021)

    Article  Google Scholar 

  16. H. Zhang, F. He, X. Li, Z. Wang, H. Zhang, A smart sensing Zn (II) coordination polymer based on a new viologen ligand exhibiting photochromic and thermochromic and multiple solid detection properties. New J. Chem. 45(35), 15851–15856 (2021)

    Article  Google Scholar 

  17. S. Sayeb, F. Debbabi, K. Horchani-Naifer, Investigation of photochromic pigment used for smart textile fabric. Opt. Mater. 128, 112393 (2022)

    Article  Google Scholar 

  18. S. Seipel, Y. Junchun, A.P. Periyasamy, M. Viková, M. Vik, V.A. Nierstrasz, Inkjet printing and UV-LED curing of photochromic dyes for functional and smart textile applications. RSC Adv. 8(50), 28395–28404 (2018)

    Article  ADS  Google Scholar 

  19. B. Cui, C. Guo, Z. Zhang, G. Fu, Construction of a novel self-bleaching photochromic hydrogel embraced within the Zn-MOF@ WO3 junction for assembling UV-irradiated smart rewritable device. Chem. Eng. J. 140822 (2022)

    Google Scholar 

  20. H. Ramlow, K.L. Andrade, A.P.S. Immich, Smart textiles: an overview of recent progress on chromic textiles. J. Text. Inst. 112(1), 152–171 (2021).

    Google Scholar 

  21. A. Abdollahi, H. Roghani-Mamaqani, B. Razavi, Stimuli-chromism of photoswitches in smart polymers: recent advances and applications as chemosensors. Prog. Polym. Sci. 98, 101149 (2019).

    Google Scholar 

  22. C. Sun, Y. Xiao-Qing, M-S. Wang, G-C. Guo, A smart photochromic semiconductor: breaking the intrinsic positive relation between conductance and temperature. Angew. Chem. 131(28), 9575−9578 (2019).

    Google Scholar 

  23. Z. He, B. Bao, J. Fan, W. Wang, Y. Dan, Photochromic cotton fabric based on microcapsule technology with anti-fouling properties. Colloids Surf. A 594, 124661 (2020)

    Article  Google Scholar 

  24. L. Liu, G. Zhu, Y. Chen, Z. Liu, L. Donaldson, X. Zhan, H. Lian, F. Qiliang, C. Mei, Switchable photochromic transparent wood as smart packaging materials. Ind. Crops Prod. 184, 115050 (2022)

    Article  Google Scholar 

  25. S. Abdelmoez, R.A. Abd, E. Azeem, A.A. Nada, T.A. Khattab, Electrospun PDA-CA nanofibers toward hydrophobic coatings. Z. Anorg. Allg. Chem. 642(3), 219–221 (2016)

    Article  Google Scholar 

  26. C.C. Satam, C.W. Irvin, A.W. Lang, J.C.R. Jallorina, M.L. Shofner, J.R. Reynolds, J.C. Meredith, Spray-coated multilayer cellulose nanocrystal—chitin nanofiber films for barrier applications. ACS Sustain. Chem. & Eng. 6(8), 10637–10644 (2018).

    Google Scholar 

  27. T.A. Khattab, M. Rehan, S.A. Aly, T. Hamouda, K.M. Haggag, T.M. Klapötke, Fabrication of PAN-TCF-hydrazone nanofibers by solution blowing spinning technique: naked-eye colorimetric sensor. J. Environ. Chem. Eng. 5(3), 2515–2523 (2017).

    Google Scholar 

  28. H. Tian, L. Yuan, J. Wang, H. Wu, H. Wang, A. Xiang, B. Ashok, A.V. Rajulu, Electrospinning of polyvinyl alcohol into crosslinked nanofibers: an approach to fabricate functional adsorbent for heavy metals. J. Hazard. Mater. 378, 120751 (2019).

    Google Scholar 

  29. M.E. El-Naggar, M.H. El-Newehy, A. Aldalbahi, W.M. Salem, T.A. Khattab, Immobilization of anthocyanin extract from red-cabbage into electrospun polyvinyl alcohol nanofibers for colorimetric selective detection of ferric ions. J. Environ. Chem. Eng. 9(2), 105072 (2021)

    Article  Google Scholar 

  30. H. Ren, L. Zheng, G. Wang, X. Gao, Z. Tan, J. Shan, L. Cui et al, Transfer-medium-free nanofiber-reinforced graphene film and applications in wearable transparent pressure sensors. Acs Nano. 13(5), 5541–5548 (2019).

    Google Scholar 

  31. L. Hou, N. Wang, W. Jing, Z. Cui, L. Jiang, Y. Zhao, Bioinspired superwettability electrospun micro/nanofibers and their applications. Adv. Func. Mater. 28(49), 1801114 (2018)

    Article  Google Scholar 

  32. S. Priya, U. Batra, R.N. Samshritha, S. Sharma, A. Chaurasiya, G. Singhvi, Polysaccharide-based nanofibers for pharmaceutical and biomedical applications: a review. Int. J. Biol. Macromol (2022)

    Google Scholar 

  33. Y. Zhou, M. Wang, C. Yan, H. Liu, Y. Deng-Guang, Advances in the application of electrospun drug-loaded nanofibers in the treatment of oral ulcers. Biomolecules 12(9), 1254 (2022)

    Article  Google Scholar 

  34. M.S. Abdelrahman, T.A. Khattab, A. Aldalbahi, M.R. Hatshan, M.E. El-Naggar, Facile development of microporous cellulose acetate xerogel immobilized with hydrazone probe for real time vapochromic detection of toxic ammonia. J. Environ. Chem. Eng. 8(6), 104573 (2020).

    Google Scholar 

  35. R. Konwarh, N. Karak, M. Misra, Electrospun cellulose acetate nanofibers: the present status and gamut of biotechnological applications. Biotechnol. Adv. 31(4), 421–437 (2013)

    Article  Google Scholar 

  36. S. Alharthi, M.E. El-Naggar, M.A. Abu-Saied, T.A. Khattab, D.I. Saleh, Preparation of biosensor based on triarylmethane loaded cellulose acetate xerogel for the detection of urea. Mater. Chem. Phys. 276, 125377 (2022)

    Google Scholar 

  37. D. Zamel, A.U. Khan, Bacterial immobilization on cellulose acetate based nanofibers for methylene blue removal from wastewater: mini-review. Inorg. Chem. Commun. 131, 108766 (2021).

    Google Scholar 

  38. A. Aldalbahi, M. El-Naggar, T. Khattab, M. Abdelrahman, M. Rahaman, A. Alrehaili, M. El-Newehy, Development of green and sustainable cellulose acetate/graphene oxide nanocomposite films as efficient adsorbents for wastewater treatment. Polymers 12(11), 2501 (2020)

    Article  Google Scholar 

  39. X. Li, Q. Feng, L. Keyu, J. Huang, Y. Zhang, Y. Hou, H. Qiao, D. Li, Q. Wei, Encapsulating enzyme into metal-organic framework during in-situ growth on cellulose acetate nanofibers as self-powered glucose biosensor. Biosens. Bioelectron. 171, 112690 (2021)

    Article  Google Scholar 

  40. K. Khoshnevisan, H. Maleki, H. Samadian, S. Shahsavari, M.H. Sarrafzadeh, B. Larijani, F.A. Dorkoosh, V. Haghpanah, M. R. Khorramizadeh, Cellulose acetate electrospun nanofibers for drug delivery systems: applications and recent advances. Carbohydr. Polym. 198, 131–141 (2018).

    Google Scholar 

  41. A.E.A. Dos Santos, F.V. Dos Santos, K.M. Freitas, L.P.S. Pimenta, L. de Oliveira Andrade, T.A. Marinho, G.F. de Avelar, A.B. da Silva, R.V. Ferreira, Cellulose acetate nanofibers loaded with crude annatto extract: preparation, characterization, and in vivo evaluation for potential wound healing applications. Mater. Sci. Eng.: C. 118, 111322 (2021).

    Google Scholar 

  42. T.A. Khattab, M. Rehan, T. Hamouda, Smart textile framework: photochromic and fluorescent cellulosic fabric printed by strontium aluminate pigment. Carbohyd. Polym. 195, 143–152 (2018)

    Article  Google Scholar 

  43. T.A. Khattab, M.E. El‐Naggar, M.S. Abdelrahman, A. Aldalbahi, M.R. Hatshan. Facile development of photochromic cellulose acetate transparent nanocomposite film immobilized with lanthanide‐doped pigment: ultraviolet blocking, superhydrophobic, and antimicrobial activity. Lumin. 36(2), 543–555 (2021).

    Google Scholar 

  44. L.U. Xiao, S. Meng, Z. Junying, W. Tianmin, Effect of mixing process on the luminescent properties of SrAl2O4: Eu2+, Dy3+ long afterglow phosphors. J. Rare Earths. 28(1), 150–152 (2010).

    Google Scholar 

  45. S. Khursheed, G.A. Sheergojri, J. Sharma, Phosphor polymer nanocomposite: SrAl2O4: Eu2+, Dy3+ embedded PMMA for solid-state applications. Mater. Today: Proc. 21, 2096–2104 (2020).

    Google Scholar 

  46. X. Liyuan, X. Qin, L. Yingliang, Preparation and characterization of flower-like SrAl2O4: Eu2+, Dy3+ phosphors by sol-gel process. J. Rare Earths 29(1), 39–43 (2011)

    Article  Google Scholar 

  47. M.H. El-Newehy, H.Y. Kim, T. A. Khattab, M. E. El-Naggar, Development of highly photoluminescent electrospun nanofibers for dual-mode secure authentication. Ceram. Int. 48(3), 3495–3503 (2022).

    Google Scholar 

  48. S.D. Al-Qahtani, R.M. Snari, K. Alkhamis, M. Alhasani, S.F. Ibarhiam, T.M. Habeebullah, N.M. El-Metwaly, Authentication of documents using polypropylene immobilized with rare-earth doped aluminate nanoparticles. Microsc. Res. Tech. 85(7), 2607–2617 (2022)

    Article  Google Scholar 

  49. H.M. Abumelha, A. Hameed, K.M. Alkhamis, J. Alkabli, E. Aljuhani, R. Shah, N.M. El-Metwaly, Development of mechanically reliable and transparent photochromic film using solution blowing spinning technology for anti-counterfeiting applications. ACS Omega 6(41), 27315–27324 (2021)

    Article  Google Scholar 

  50. M. El-Newehy, M.M. Abdulhameed, A.M. Karami, H. El-Hamshary, Development of luminescent solution blown spun nanofibers from recycled polyester waste toward dual-mode fluorescent photochromism. J. Polym. Environ. 1–12 (2022).

    Google Scholar 

  51. K. Abou-Melha, Preparation of photoluminescent nanocomposite ink toward dual-mode secure anti-counterfeiting stamps. Arab. J. Chem. 15(2), 103604 (2022)

    Article  Google Scholar 

  52. O.M. Mokhtar, Y.A. Attia, A.R. Wassel, T.A. Khattab, Production of photochromic nanocomposite film via spray-coating of rare-earth strontium aluminate for anti-counterfeit applications. Luminescence 36(8), 1933–1944 (2021)

    Article  Google Scholar 

  53. K. Alkhamis, H. Alessa, A.T. Mogharbel, A. Almahri, J. Qurban, T.M. Habeebullah, N.M. El-Metwaly, Preparation of a transparent photoluminescent self-healable smart ink for a dual-mode security authentication. Ind. Eng. Chem. Res. 61(46), 16962–16971 (2022)

    Article  Google Scholar 

  54. S.D. Al-Qahtani, R.M. Snari, K. Alkhamis, N.M. Alatawi, M. Alhasani, S.Y. Al-nami, N.M. El-Metwaly, Development of silica-coated rare-earth doped strontium aluminate toward superhydrophobic, anti-corrosive and long-persistent photoluminescent epoxy coating. Luminescence 37(3), 479–489 (2022)

    Article  Google Scholar 

  55. M.E. El-Naggar, A. Aldalbahi, T.A. Khattab, M. Hossain, Facile production of smart superhydrophobic nanocomposite for wood coating towards long-lasting glow-in-the-dark photoluminescence. Luminescence 36(8), 2004–2013 (2021)

    Article  Google Scholar 

  56. T D. Nguyen, L.P. Yeo, A.J. Ong, W. Zhiwei, D. Mandler, S. Magdassi, A.I.Y. Tok, Electrochromic smart glass coating on functional nano-frameworks for effective building energy conservation. Mater. Today Energy. 18, 100496 (2020).

    Google Scholar 

  57. C.-C. Li, H.-Y. Tseng, C.-W. Chen, C.-T. Wang, H.-C. Jau, W. Yu-Ching, W.-H. Hsu, T.-H. Lin, Versatile energy-saving smart glass based on tristable cholesteric liquid crystals. ACS Appl. Energy Mater. 3(8), 7601–7609 (2020)

    Article  Google Scholar 

  58. A. Espindola, N.S. Gonçalves, M. Nalin, S.J.L. Ribeiro, H.S. Barud, C. Molina, Casting and inkjet printable photochromic films based on polymethylmethacrylate–phosphotungstic acid. Opt. Mater. 96, 109345 (2019)

    Article  Google Scholar 

  59. R. Tang, Y. Xiao, H. Luo, X. Qiao, J. Hou, One-step electrospinning PMMA-SPO with hierarchical architectures as a multi-functional transparent screen window. New J. Chem. 46(35), 16675–16683 (2022)

    Article  Google Scholar 

  60. J.P. Hagen, I. Becerra, D. Drakulich, R.O. Dillon, Effect of antenna porphyrins and phthalocyanines on the photochromism of benzospiropyrans in poly (methyl methacrylate) films. Thin solid films. 398, 104–109 (2001).

    Google Scholar 

  61. A. Yamano, H. Kozuka, Polymethylmethacrylate-silica hybrid thin films heavily doped with spiropyran and exhibiting visual photochromism and high mechanical and chemical durability. J. Sol-Gel. Sci. Technol. 53(3), 661–665 (2010)

    Article  Google Scholar 

  62. M.H. El‐Newehy, H.Y. Kim, T.A. Khattab, M.E. El‐Naggar, Production of photoluminescent transparent poly (methyl methacrylate) for smart windows. Luminescence. 37(1), 97–107 (2022).

    Google Scholar 

  63. M. El‐Newehy, H. El‐Hamshary, M.M. Abdulhameed, A.M. Tawfeek, Immobilization of lanthanide doped aluminate phosphor onto recycled polyester toward the development of long‐persistent photoluminescence smart window. Luminescence. 37(4), 610–621 (2022).

    Google Scholar 

  64. M.E. El-Naggar, S. Ullah, S. Wageh, M.A. Abu-Saied, T.A. Khattab, D. Alhashmialameer, M. Abou Taleb, E. A. Matter, Preparation of epoxy resin/rare earth doped aluminate nanocomposite toward photoluminescent and superhydrophobic transparent woods. J. Rare Earths (2022). https://doi.org/10.1016/j.jre.2022.04.018

  65. S. Al-Qahtani, E. Aljuhani, R. Felaly, K. Alkhamis, J. Alkabli, A. Munshi, N. El-Metwaly, Development of photoluminescent translucent wood toward photochromic smart window applications. Ind. Eng. Chem. Res. 60(23), 8340–8350 (2021)

    Article  Google Scholar 

  66. T.A. Khattab, M. Rehan, Y. Hamdy, T.I. Shaheen, Facile development of photoluminescent textile fabric via spray coating of Eu (II)-doped strontium aluminate. Ind. Eng. Chem. Res. 57(34), 11483–11492 (2018)

    Article  Google Scholar 

  67. T.A. Khattab, M.M.G. Fouda, M.S. Abdelrahman, S.I. Othman, M. Bin-Jumah, M. A. Alqaraawi, H. Al Fassam, A.A. Allam, Development of illuminant glow-in-the-dark cotton fabric coated by luminescent composite with antimicrobial activity and ultraviolet protection. J. Fluoresc. 29(3), 703–710 (2019).

    Google Scholar 

  68. H.H. Alsharief, G.A.A. Al-Hazmi, S.O. Alzahrani, A. Almahri, N.A. Alamrani, N.M. Alatawi, N.M. El-Metwaly, Immobilization of strontium aluminate nanoparticles onto plasma-pretreated nonwoven polypropylene fibers by screen-printing toward photochromic textiles. J. Mater. Res. Technol. 20, 3146–3157 (2022).

    Google Scholar 

  69. P. Garrigue, M.H. Delville, C. Labrugère, E. Cloutet, P.J. Kulesza, J.P. Morand, A. Kuhn, Top−down approach for the preparation of colloidal carbon nanoparticles. Chem. Mater. 16(16), 2984–2986 (2004).

    Google Scholar 

  70. T.A. Khattab, H.E. Gaffer, S.A. Aly, T.M. Klapötke, Synthesis, solvatochromism, antibacterial activity and dyeing performance of tricyanofuran‐hydrazone analogues. ChemistrySelect. 1(21), 6805–6809 (2016).

    Google Scholar 

  71. M.Y. Zaghloul, M.M. Mahmoud, Y. Zaghloul, M.M.Y. Zaghloul, Developments in polyester composite materials–an in-depth review on natural fibres and nano fillers. Compos. Struct. 278, 114698 (2021)

    Article  Google Scholar 

  72. M.S. Abdelrahman, S.H. Nassar, H. Mashaly, S. Mahmoud, D. Maamoun, T.A. Khattab, Polymerization products of lactic acid as synthetic thickening agents for textile printing. J. Mol. Struct. 1203, 127421 (2020)

    Article  Google Scholar 

  73. R.M.S. Attar, M. Alshareef, R.M. Snari, O. Alaysuy, A.M. Aldawsari, S. Abu-Melha, N.M. El-Metwaly, Development of novel photoluminescent fibers from recycled polyester waste using plasma-assisted dyeing toward ultraviolet sensing and protective textiles. J. Mater. Res. Technol. 21, 1630–1642 (2022).

    Google Scholar 

  74. H. Zhao, Z. Yang, L. Guo, Nacre-inspired composites with different macroscopic dimensions: strategies for improved mechanical performance and applications. NPG Asia Mater. 10(4), 1–22 (2018)

    Article  Google Scholar 

  75. J. Naveen, M. Jawaid, K.L. Goh, D.M. Reddy, C. Muthukumar, T.M. Loganathan, K.N.G.L. Reshwanth, Advancement in graphene-based materials and their nacre inspired composites for armour applications—a review. Nanomaterials. 11(5), 1239 (2021).

    Google Scholar 

  76. R.M.N. Javed, A. Al-Othman, M. Tawalbeh, A.G. Olabi, Recent developments in graphene and graphene oxide materials for polymer electrolyte membrane fuel cells applications. Renew. Sustain. Energy Rev. 168, 112836 (2022).

    Google Scholar 

  77. L.P. Lingamdinne, J.R. Koduru, R.R. Karri, A comprehensive review of applications of magnetic graphene oxide based nanocomposites for sustainable water purification. J. Environ. Manag. 231, 622–634 (2019).

    Google Scholar 

  78. Y. Zhu, S. Murali, W. Cai, X. Li, J.W. Suk, J.R. Potts, R.S. Ruoff, Graphene and graphene oxide: synthesis, properties, and applications. Adv. Mater. 22(35), 3906–3924 (2010).

    Google Scholar 

  79. G. Chen, B. Yuan, Y. Wang, X. Chen, C. Huang, S. Shang, H. Tao et al, Nacre-biomimetic graphene oxide paper intercalated by phytic acid and its ultrafast fire-alarm application. J. Colloid Interface Sci. 578, 412–421 (2020).

    Google Scholar 

  80. Y. Wang, Z. Zhang, T. Li, P. Ma, X. Zhang, B. Xia, M. Chen, D. Mingliang, T. Liu, W. Dong, Artificial nacre epoxy nanomaterials based on janus graphene oxide for thermal management applications. ACS Appl. Mater. Interfaces. 12(39), 44273–44280 (2020)

    Article  Google Scholar 

  81. A. Hameed, R.M. Snari, O. Alaysuy, A.A. Alluhaybi, M. Alhasani, H.M. Abumelha, N.M. El‐Metwaly, Development of photoluminescent artificial nacre‐like nanocomposite from polyester resin and graphene oxide. Microsc. Res. Tech. (2022).

    Google Scholar 

  82. S. Alzahrani, K. Alkhamis, R. Felaly, F. Alkhatib, R. Pashameah, R. Shah, N.M. El-Metwaly, Preparation of transparent photoluminescence plastic concrete integrated with lanthanide aluminate. Ceram. Int. (2022). https://doi.org/10.1016/j.ceramint.2022.12.135

  83. T.A. Khattab, E. Tolba, H. Gaffer, S. Kamel, Development of electrospun nanofibrous-walled tubes for potential production of photoluminescent endoscopes. Ind. Eng. Chem. Res. 60(28), 10044–10055 (2021)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tawfik A. Khattab .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Abdelrahman, M.S., Ahmed, H., Khattab, T.A. (2023). Optical and Luminescent Properties of Lanthanide-Doped Strontium Aluminates. In: Kumar, V., Sharma, V., Swart, H.C. (eds) Advanced Materials for Solid State Lighting. Progress in Optical Science and Photonics, vol 25. Springer, Singapore. https://doi.org/10.1007/978-981-99-4145-2_13

Download citation

Publish with us

Policies and ethics