Skip to main content

Rare-Earth Doped Inorganic Materials for Light-Emitting Applications

  • Chapter
  • First Online:
Advanced Materials for Solid State Lighting

Part of the book series: Progress in Optical Science and Photonics ((POSP,volume 25))

  • 292 Accesses

Abstract

Humanity is constantly confronted with many lighting systems in daily life, from public transportation to automobiles, as well as inside our homes. The illuminating devices gradually upgraded from their old versions, which are incandescent lamps, to fluorescent lamps and ultimately to contemporary light-emitting diodes. Currently, by visualizing the inside and outside, it is observed that phosphor materials have revolutionized the modern world in every aspect one can think of. In addition to saving energy, they are also non-toxic, eco-friendly, cost-effective, and size compatible. While developing these new phosphor materials and reviewing new breakthroughs for the generation of white light, it is necessary to ensure several optical properties, such as quantum efficiency, thermal stability, short-emission decay time, and stability. In addition, focus should be placed on the synthesis methods as well as the manufacturing cost. This new technology is on the verge of supplanting all previous generations of lighting sources. Although most rear earth ions are being used in phosphor materials, this book chapter will illuminate the role of other elements, especially transition metals, in these devices. Different parameters that govern the characteristic luminescence features are discussed in this chapter. Finally, an appropriate conclusion is reached that includes some aspects of future perspectives.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. R.J. Xie, N. Hirosaki, Silicon-based oxynitride and nitride phosphors for white LEDs-a review. Sci. Technol. Adv. Mater. 8, 588–600 (2007). https://doi.org/10.1016/j.stam.2007.08.005

    Article  Google Scholar 

  2. C.J. Humphreys, Solid-state lighting. MRS Bull. 33, 459–470 (2008). https://doi.org/10.1557/MRS2008.91

    Article  Google Scholar 

  3. J. Baur, F. Baumann, M. Peter, K. Engl, U. Zehnder, J. Off, V. Kuemmler, M. Kirsch, J. Strauss, R. Wirth, K. Streubel, B. Hahn, Status of high efficiency and high power thin GaN®-LED development. Phys. Status Solidi. 6, S905–S908 (2009). https://doi.org/10.1002/pssc.200880936

    Article  ADS  Google Scholar 

  4. M.H. Chang, D. Das, P.V. Varde, M. Pecht, Light emitting diodes reliability review. Microelectron. Reliab. 52, 762–782 (2012). https://doi.org/10.1016/j.microrel.2011.07.063

    Article  Google Scholar 

  5. T. Wipiejewski, T. Moriarty, V. Hung, P. Doyle, G. Duggan, D. Barrow, B. McGarvey, M. O’Gorman, T. Calvert, M. Maute, V. Gerhardt, J.D. Lambkin, Gigabits in the home with plugless plastic optical fiber (POF) interconnects 1263–1266 (2008). https://doi.org/10.1109/ESTC.2008.4684535

  6. D.A. Steigerwald, J.C. Bhat, D. Collins, R.M. Fletcher, M.O. Holcomb, M.J. Ludowise, P.S. Martin, S.L. Rudaz, Illumination with solid state lighting technology. IEEE J. Sel. Top. Quantum Electron. 8, 310–320 (2002). https://doi.org/10.1109/2944.999186

    Article  ADS  Google Scholar 

  7. A.C. Berends, M.J.J. Mangnus, C. Xia, F.T. Rabouw, C. De Mello Donega, Optoelectronic properties of ternary I-III-VI 2 semiconductor nanocrystals: bright prospects with elusive origins. J. Phys. Chem. Lett. 10, 1600–1616 (2019). https://doi.org/10.1021/acs.jpclett.8b03653

  8. T. Wang, B. Zhu, S. Wang, Q. Yuan, H. Zhang, Z. Kang, R. Wang, H. Zhang, W. Ji, Influence of shell thickness on the performance of NiO-based all-inorganic quantum dot light-emitting diodes. ACS Appl. Mater. Interfaces 10, 14894–14900 (2018). https://doi.org/10.1021/acsami.8b01814

    Article  Google Scholar 

  9. S.A. Kazaryan, N.F. Starodubtsev, Theoretical and experimental research of luminescent properties of nanoparticles. Inorg. Mater. Appl. Res. 9, 151–161 (2018). https://doi.org/10.1134/S2075113318020144

    Article  Google Scholar 

  10. G.B. Nair, S.J. Dhoble, A perspective perception on the applications of light-emitting diodes. Luminescence 30, 1167–1175 (2015). https://doi.org/10.1002/bio.2919

    Article  Google Scholar 

  11. J. Liu, Z.M. Zhang, Z.C. Wu, F.F. Wang, Z.J. Li, Study on luminescence and thermal stability of blue-emitting Sr5(PO4)3F: Eu2+ phosphor for application in InGaN-based LEDs. Mater. Sci. Eng. B Solid-State Mater. Adv. Technol. 221, 10–16 (2017). https://doi.org/10.1016/j.mseb.2017.03.014

  12. E. Cavalli, P. Boutinaud, M. Grinberg, Luminescence dynamics in CaWO4:Pr3+ powders and single crystals. J. Lumin. 169, 450–453 (2016). https://doi.org/10.1016/j.jlumin.2014.10.069

    Article  Google Scholar 

  13. R. Cao, D. Peng, H. Xu, Z. Luo, H. Ao, S. Guo, J. Fu, Synthesis and luminescence properties of Sr3(VO4)2:Eu3+ phosphor and emission enhancement by co-doping Li+ ion. Optik 127, 7896–7901 (2016). https://doi.org/10.1016/j.ijleo.2016.05.157

    Article  ADS  Google Scholar 

  14. L. Jing, X. Liu, Y. Li, Y. Wang, Synthesis and photoluminescence properties of Ca9Y(VO4)7: Dy phosphors for white light-emitting diodes. J. Lumin. 162, 185–190 (2015). https://doi.org/10.1016/j.jlumin.2015.02.048

    Article  Google Scholar 

  15. X. Mi, K. Du, K. Huang, P. Zhou, D. Geng, Y. Zhang, M. Shang, J. Lin, Synthesis and luminescence of Ca 9 Eu1−xLnx(VO4)7 (Ln = Y, La, Gd, Lu) phosphors. Mater. Res. Bull. 60, 72–78 (2014). https://doi.org/10.1016/j.materresbull.2014.08.017

    Article  Google Scholar 

  16. H. Zhu, M. Fang, Z. Huang, Y. Liu, K. Chen, X. Min, Y. Mao, M. Wang, Photoluminescence properties of Li2Mg2(WO4)3:Eu3+ red phosphor with high color purity for white LEDs applications. J. Lumin. 172, 180–184 (2016). https://doi.org/10.1016/j.jlumin.2015.12.021

    Article  Google Scholar 

  17. P.C. Ricci, Assessment of crystalline materials for solid state lighting applications: beyond the rare earth elements. Crystals 10, 1–16 (2020). https://doi.org/10.3390/cryst10070559

    Article  Google Scholar 

  18. Nobel Foundation, Blue LEDs–filling the world with new light. R. Swedish Acad. Sci. 5, 1–5 (2014). http://www.nobelprize.org/nobel_prizes/physics/laureates/2014/popular-physicsprize2014

  19. A. Janotti, C.G. Van de Walle, Fundamentals of zinc oxide as a semiconductor. Reports Prog. Phys. 72, 126501 (2009). https://doi.org/10.1088/0034-4885/72/12/126501

    Article  ADS  Google Scholar 

  20. S.A.M. Lima, M. Cremona, M.R. Davolos, C. Legnani, W.G. Quirino, Electroluminescence of zinc oxide thin-films prepared via polymeric precursor and via sol-gel methods. Thin Solid Films 516, 165–169 (2007). https://doi.org/10.1016/j.tsf.2007.06.106

    Article  ADS  Google Scholar 

  21. F. Rahman, Zinc oxide light-emitting diodes: a review. Opt. Eng. 58, 1 (2019). https://doi.org/10.1117/1.OE.58.1.010901

    Article  Google Scholar 

  22. J.C. Fan, K.M. Sreekanth, Z. Xie, S.L. Chang, K.V. Rao, P-type ZnO materials: theory, growth, properties and devices. Prog. Mater. Sci. 58, 874–985 (2013). https://doi.org/10.1016/j.pmatsci.2013.03.002

    Article  Google Scholar 

  23. A. Baltakesmez, S. Tekmen, P. Kö̧, S. Tüzemen, K. Meral, Y. Onganer, UV-visible detector and LED based n-ZnO/p-Si heterojunction formed by electrodeposition. AIP Adv. 3, 032125 (2013). https://doi.org/10.1063/1.4795737

  24. L. Yang, Y. Wang, H. Xu, W. Liu, C. Zhang, C. Wang, Z. Wang, J. Ma, Y. Liu, Color-tunable ZnO/GaN heterojunction LEDs achieved by coupling with Ag nanowire surface plasmons. ACS Appl. Mater. Interfaces 10, 15812–15819 (2018). https://doi.org/10.1021/acsami.8b00940

    Article  Google Scholar 

  25. M. Ding, Z. Guo, L. Zhou, X. Fang, L. Zhang, L. Zeng, L. Xie, H. Zhao, One-dimensional zinc oxide nanomaterials for application in high-performance advanced optoelectronic devices. Crystals 8, 223 (2018). https://doi.org/10.3390/cryst8050223

    Article  Google Scholar 

  26. H. Ohta, M. Orita, M. Hirano, H. Hosono, Fabrication and characterization of ultraviolet-emitting diodes composed of transparent p-n heterojunction, p-SrCu2O2 and n-ZnO. J. Appl. Phys. 89, 5720–5725 (2001). https://doi.org/10.1063/1.1367315

    Article  ADS  Google Scholar 

  27. K. Katayama, H. Matsubara, F. Nakanishi, T. Nakamura, H. Doi, A. Saegusa, T. Mitsui, T. Matsuoka, M. Irikura, T. Takebe, S. Nishine, T. Shirakawa, ZnSe-based white LEDs. J. Cryst. Growth 214, 1064–1070 (2000). https://doi.org/10.1016/S0022-0248(00)00275-X

    Article  ADS  Google Scholar 

  28. F. Fuchs, V.A. Soltamov, S. Väth, P.G. Baranov, E.N. Mokhov, G.V. Astakhov, V. Dyakonov, Silicon carbide light-emitting diode as a prospective room temperature source for single photons. Sci. Rep. 3, 1–4 (2013). https://doi.org/10.1038/srep01637

    Article  Google Scholar 

  29. G. Cheng, Y. Liu, T. Chen, W. Chen, Z. Fang, J. Zhang, L. Ding, X. Li, T. Shi, Z. Xiao, Efficient all-inorganic perovskite light-emitting diodes with improved operation stability. ACS Appl. Mater. Interfaces 12, 18084–18090 (2020). https://doi.org/10.1021/acsami.9b23170

    Article  Google Scholar 

  30. G.B. Nair, H.C. Swart, S.J. Dhoble, A review on the advancements in phosphor-converted light emitting diodes (pc-LEDs): phosphor synthesis, device fabrication and characterization. Prog. Mater. Sci. 109, 100622 (2020). https://doi.org/10.1016/j.pmatsci.2019.100622

    Article  Google Scholar 

  31. A.K.R. Choudhury, Principles of Colour and Appearance Measurement: Object Appearance, Colour Perception, and Instrumental Measurements (Elsevier, 2014)

    Google Scholar 

  32. X. Guo, K.W. Houser, A review of colour rendering indices and their application to commercial light sources. Light. Res. Technol. 36, 183–199 (2004). https://doi.org/10.1191/1365782804li112oa

    Article  Google Scholar 

  33. S. Ye, F. Xiao, Y.X. Pan, Y.Y. Ma, Q.Y. Zhang, Phosphors in phosphor-converted white light-emitting diodes: recent advances in materials, techniques and properties. Mater. Sci. Eng. R Rep. 71, 1–34 (2010). https://doi.org/10.1016/j.mser.2010.07.001

    Article  Google Scholar 

  34. C.H. Huang, T.M. Chen, W.R. Liu, Y.C. Chiu, Y.T. Yeh, S.M. Jang, A single-phased emission-tunable phosphor Ca9Y(PO4)7:Eu2+, Mn2+ with efficient energy transfer for white-light-emitting diodes. ACS Appl. Mater. Interfaces 2, 259–264 (2010). https://doi.org/10.1021/am900668r

    Article  Google Scholar 

  35. J. Zhang, Z. Hua, F. Zhang, Warm white-light generation in Ca9MgNa(PO4)7:Sr2+, Mn2+, Ln (Ln=Eu2+, Yb3+, Er3+, Ho3+, and Tm3+) under near-ultraviolet and near-infrared excitation. Ceram. Int. 41, 9910–9915 (2015). https://doi.org/10.1016/j.ceramint.2015.04.068

    Article  Google Scholar 

  36. V. Lisitsyn, L. Lisitsyna, A. Tulegenova, Y. Ju, E. Polisadova, E. Lipatov, V. Vaganov, Nanodefects in YAG: Ce-based phosphor microcrystals. Crystals 9, 476 (2019). https://doi.org/10.3390/cryst9090476

    Article  Google Scholar 

  37. F. Armetta, M.L. Saladino, C. Giordano, C. Defilippi, Ł Marciniak, D. Hreniak, E. Caponetti, Non-conventional Ce: YAG nanostructures via urea complexes. Sci. Rep. 9, 1–12 (2019). https://doi.org/10.1038/s41598-019-39069-6

    Article  Google Scholar 

  38. S.R. Gang, D. Kim, S.M. Kim, N. Hwang, K.C. Lee, Improvement in the moisture stability of CaS: Eu phosphor applied in light-emitting diodes by titania surface coating. Microelectron. Reliab. 52, 2174–2179 (2012). https://doi.org/10.1016/j.microrel.2012.06.142

    Article  Google Scholar 

  39. Q. Xia, M. Batentschuk, A. Osvet, A. Winnacker, J. Schneider, Quantum yield of Eu2+ emission in (Ca1−xSrx)S: Eu light emitting diode converter at 20–420 K. Radiat. Meas. 45, 350–352 (2010). https://doi.org/10.1016/J.RADMEAS.2009.09.010

    Article  Google Scholar 

  40. A. Lempicki, E. Berman, A.J. Wojtowicz, M. Balcerzyk, L.A. Boatner, Cerium-doped orthophosphates: new promising scintillators. IEEE Trans. Nucl. Sci. 40, 384–387 (1993). https://doi.org/10.1109/23.256585

    Article  ADS  Google Scholar 

  41. G. Rooh, H.J. Kim, H. Park, S. Kim, H. Jiang, Cerium-doped Cs2NaGdCl6 scintillator for X-ray and γ -ray detection. IEEE Trans. Nucl. Sci. 61, 397–401 (2014). https://doi.org/10.1109/TNS.2013.2283882

    Article  ADS  Google Scholar 

  42. S. Baccaro, K. Blaẑek, F. de Notaristefani, P. Maly, J.A. Mares, R. Pani, R. Pellegrini, A. Soluri, Scintillation properties of YAP: Ce, Nucl. Inst. Methods Phys. Res. A. 361, 209–215 (1995). https://doi.org/10.1016/0168-9002(95)00016-X

  43. P.C. Ricci, C.M. Carbonaro, A. Casu, C. Cannas, R. Corpino, L. Stagi, A. Anedda, Optical and structural characterization of cerium doped LYSO sol–gel polycrystal films: potential application as scintillator panel for X-ray imaging. J. Mater. Chem. 21, 7771–7776 (2011). https://doi.org/10.1039/C1JM10492F

    Article  Google Scholar 

  44. R. Cao, W. Wang, J. Zhang, S. Jiang, Z. Chen, W. Li, X. Yu, Synthesis and luminescence properties of Li2SnO3:Mn4+ red-emitting phosphor for solid-state lighting. J. Alloys Compd. 704, 124–130 (2017). https://doi.org/10.1016/j.jallcom.2017.02.079

    Article  Google Scholar 

  45. T. Lesniewski, S. Mahlik, M. Grinberg, R.S. Liu, Temperature effect on the emission spectra of narrow band Mn4+ phosphors for application in LEDs. Phys. Chem. Chem. Phys. 19, 32505–32513 (2017). https://doi.org/10.1039/C7CP06548E

    Article  Google Scholar 

  46. Q. Zhou, L. Dolgov, A.M. Srivastava, L. Zhou, Z. Wang, J. Shi, M.D. Dramićanin, M.G. Brik, M. Wu, Mn2+ and Mn4+ red phosphors: synthesis, luminescence and applications in WLEDs. A review. J. Mater. Chem. C. 6, 2652–2671 (2018). https://doi.org/10.1039/c8tc00251g

  47. M.G. Brik, A.M. Srivastava, On the optical properties of the Mn4+ ion in solids. J. Lumin. 133, 69–72 (2013). https://doi.org/10.1016/j.jlumin.2011.08.047

    Article  Google Scholar 

  48. H.D. Nguyen, C.C. Lin, M.H. Fang, R.S. Liu, Synthesis of Na2SiF6:Mn4+ red phosphors for white LED applications by co-precipitation. J. Mater. Chem. C. 2, 10268–10272 (2014). https://doi.org/10.1039/C4TC02062F

    Article  Google Scholar 

  49. Y.D. Xu, D. Wang, L. Wang, N. Ding, M. Shi, J.G. Zhong, S. Qi, Preparation and luminescent properties of a new red phosphor (Sr4Al14O25:Mn4+) for white LEDs. J. Alloys Compd. 550, 226–230 (2013). https://doi.org/10.1016/j.jallcom.2012.09.139

    Article  Google Scholar 

  50. Z. Qiu, T. Luo, J. Zhang, W. Zhou, L. Yu, S. Lian, Effectively enhancing blue excitation of red phosphor Mg2TiO4:Mn4+ by Bi3+ sensitization. J. Lumin. 158, 130–135 (2015). https://doi.org/10.1016/j.jlumin.2014.09.032

    Article  Google Scholar 

  51. M.G. Brik, N.M. Avram, Microscopic analysis of the crystal field strength and electron-vibrational interaction in cubic SrTiO3 doped with Cr3+, Mn4+ and Fe5+ ions. J. Phys. Condens. Matter. 21, 155502 (2009). https://doi.org/10.1088/0953-8984/21/15/155502

    Article  ADS  Google Scholar 

  52. Y. Li, S. Qi, P. Li, Z. Wang, Research progress of Mn doped phosphors. RSC Adv. 7, 38318–38334 (2017). https://doi.org/10.1039/c7ra06026b

    Article  ADS  Google Scholar 

  53. T.T. Deng, E.H. Song, Y.Y. Zhou, L.Y. Wang, Q.Y. Zhang, Tailoring photoluminescence stability in double perovskite red phosphors A2BAlF6:Mn4+ (A = Rb, Cs; B = K, Rb): via neighboring-cation modulation. J. Mater. Chem. C. 5, 12422–12429 (2017). https://doi.org/10.1039/c7tc04411a

    Article  Google Scholar 

  54. Z. Wang, Y. Zhou, Y. Liu, Q. Zhou, L. Luo, H. Tan, Q. Zhang, G. Chen, J. Peng, Highly efficient red phosphor Cs2GeF6:Mn4+ for warm white light-emitting diodes. RSC Adv. 5, 82409–82414 (2015). https://doi.org/10.1039/C5RA18070H

    Article  ADS  Google Scholar 

  55. Q. Zhou, Y. Zhou, Y. Liu, Z. Wang, G. Chen, J. Peng, J. Yan, M. Wu, A new and efficient red phosphor for solid-state lighting: Cs2TiF6:Mn4+. J. Mater. Chem. C 3, 9615–9619 (2015). https://doi.org/10.1039/C5TC02290H

    Article  Google Scholar 

  56. L.Y. Wang, E.H. Song, Y.Y. Zhou, T.T. Deng, S. Ye, Q.Y. Zhang, An efficient and stable narrow band Mn 4+ -activated fluorotitanate red phosphor Rb2TiF6:Mn4+ for warm white LED applications. J. Mater. Chem. C 6, 8670–8678 (2018). https://doi.org/10.1039/C8TC02615G

    Article  Google Scholar 

  57. T.T. Deng, E.H. Song, Y.Y. Zhou, L.Y. Wang, S. Ye, Q.Y. Zhang, Stable narrowband red phosphor K3GaF6:Mn4+ derived from hydrous K2GaF5(H2O) and K2MnF6. J. Mater. Chem. C 5, 9588–9596 (2017). https://doi.org/10.1039/c7tc03116e

    Article  Google Scholar 

  58. Z. Yang, Q. Wei, M. Rong, Z. Yang, Z. Wang, Q. Zhou, Q. Wang, Novel red-emitting phosphors A2HfF6:Mn4+ (A = Rb+, Cs+) for solid-state lighting. Dalt. Trans. 46, 9451–9456 (2017). https://doi.org/10.1039/C7DT01842H

    Article  Google Scholar 

  59. J. Zhang, F. Zhang, L. Han, Investigation on luminescence of red-emitting Mg3Ca3(PO4)4:Ce3+, Mn2+ phosphors. J. Rare Earths 33, 820–824 (2015). https://doi.org/10.1016/S1002-0721(14)60490-7

    Article  Google Scholar 

  60. J. Zhou, T. Wang, X. Yu, D. Zhou, J. Qiu, The synthesis and photoluminescence of a single-phased white-emitting NaAlSiO4:Ce3+, Mn2+ phosphor for WLEDs. Mater. Res. Bull. 73, 1–5 (2016). https://doi.org/10.1016/j.materresbull.2015.08.006

    Article  Google Scholar 

  61. M. Jiao, Y. Jia, W. Lü, W. Lv, Q. Zhao, B. Shao, H. You, Sr3GdNa(PO4)3F:Eu2+, Mn2+: a potential color tunable phosphor for white LEDs. J. Mater. Chem. C. 2, 90–97 (2014). https://doi.org/10.1039/c3tc31837k

    Article  ADS  Google Scholar 

  62. W. Tang, Z. Zhang, Realization of color tuning via solid-solution and energy transfer in Ca3−xSrx(PO4)2:Eu2+, Mn2+ phosphors. J. Mater. Chem. C 3, 5339–5346 (2015). https://doi.org/10.1039/C5TC00562K

    Article  Google Scholar 

  63. R. Zhong, J. Zhang, Red photoluminescence due to energy transfer from Eu2+ to Cr3+ in BaAl12O19. J. Lumin. 130, 206–210 (2010). https://doi.org/10.1016/j.jlumin.2009.09.021

    Article  Google Scholar 

  64. B. Malysa, A. Meijerink, T. Jüstel, Temperature dependent Cr3+ photoluminescence in garnets of the type X3Sc2Ga3O12 (X = Lu, Y, Gd, La). J. Lumin. 202, 523–531 (2018). https://doi.org/10.1016/j.jlumin.2018.05.076

    Article  Google Scholar 

  65. R.E. Samad, G.E.C. Nogueira, S.L. Baldochi, N.D. Vieira, Development of a flashlamp-pumped Cr:LiSAF laser operating at 30 Hz. Appl. Opt. 45, 3356–3360 (2006). https://doi.org/10.1364/AO.45.003356

    Article  ADS  Google Scholar 

  66. Q. Shao, H. Ding, L. Yao, J. Xu, C. Liang, Z. Li, Y. Dong, J. Jiang, Broadband near-infrared light source derived from Cr3+ -doped phosphors and a blue LED chip. Opt. Lett. 43, 5251 (2018). https://doi.org/10.1364/ol.43.005251

    Article  ADS  Google Scholar 

  67. Q. Shao, H. Ding, L. Yao, J. Xu, C. Liang, J. Jiang, Photoluminescence properties of a ScBO3:Cr3+ phosphor and its applications for broadband near-infrared LEDs. RSC Adv. 8, 12035–12042 (2018). https://doi.org/10.1039/c8ra01084f

    Article  ADS  Google Scholar 

  68. J. Zhou, Z. Xia, Synthesis, luminescence properties and energy transfer behavior of Na 2CaMg(PO4)2:Eu2+, Mn2+ phosphors. J. Lumin. 146, 22–26 (2014). https://doi.org/10.1016/j.jlumin.2013.09.031

    Article  Google Scholar 

  69. W.R. Liu, C.H. Huang, C.W. Yeh, J.C. Tsai, Y.C. Chiu, Y.T. Yeh, R.S. Liu, A study on the luminescence and energy transfer of single-phase and color-tunable KCaY(PO4)2:Eu2+, Mn2+ phosphor for application in white-light LEDs. Inorg. Chem. 51, 9636–9641 (2012). https://doi.org/10.1021/IC3007102

    Article  Google Scholar 

  70. W. Ding, J. Wang, Z. Liu, M. Zhang, Q. Su, J. Tang, An intense green/yellow dual-chromatic calcium chlorosilicate phosphor Ca3SiO4Cl2:Eu2+, Mn2+ for yellow and white LED. J. Electrochem. Soc. 155, J122 (2008). https://doi.org/10.1149/1.2890240

    Article  Google Scholar 

  71. W.C. Ke, C.C. Lin, R.S. Liu, M.C. Kuo, Energy transfer and significant improvement moist stability of BaMgAl10O17:Eu2+, Mn2+as a phosphor for white light-emitting diodes. J. Electrochem. Soc. 157, J307 (2010). https://doi.org/10.1149/1.3454755

    Article  Google Scholar 

  72. L. Ma, D.J. Wang, Z.Y. Mao, Q.F. Lu, Z.H. Yuan, Investigation of Eu-Mn energy transfer in A3MgSi2O8: Eu2+, Mn2+ (A = Ca, Sr, Ba) for light-emitting diodes for plant cultivation. Appl. Phys. Lett. 93, 144101 (2008). https://doi.org/10.1063/1.2996256

    Article  ADS  Google Scholar 

  73. X. Zheng, Q. Fei, Z. Mao, Y. Liu, Y. Cai, Q. Lu, H. Tian, D. Wang, Incorporation of Si-N inducing white light of SrAl2Si2O8:Eu2+, Mn2+ phosphor for white light emitting diodes. J. Rare Earths 29, 522–526 (2011). https://doi.org/10.1016/S1002-0721(10)60491-7

    Article  Google Scholar 

  74. P. Li, Z. Wang, Z. Yang, Q. Guo, Sr2B2P2O10:Eu2+, Mn2+, Ba2+: A potential single-phase white light-emitting phosphor for UV light emitting diodes. J. Electrochem. Soc. 157, H504 (2010). https://doi.org/10.1149/1.3328178

    Article  Google Scholar 

  75. N. Guo, Y. Huang, M. Yang, Y. Song, Y. Zheng, H. You, A tunable single-component warm white-light Sr3Y(PO4)3:Eu2+, Mn2+ phosphor for white-light emitting diodes. Phys. Chem. Chem. Phys. 13, 15077–15082 (2011). https://doi.org/10.1039/c1cp20635d

    Article  Google Scholar 

  76. Z. Yang, S. Ma, H. Yu, F. Wang, X. Ma, Y. Liu, P. Li, Luminescence studies of Ba1-xMg2-y(PO4)2:xEu2+, yMn2+ phosphor. J. Alloys Compd. 509, 76–79 (2011). https://doi.org/10.1016/j.jallcom.2010.08.088

    Article  Google Scholar 

  77. M. Li, L. Wang, W. Ran, Q. Liu, C. Ren, H. Jiang, J. Shi, Broadly tunable emission from Ca2Al2SiO7: Bi phosphors based on crystal field modulation around Bi ions. New J. Chem. 40, 9579–9585 (2016). https://doi.org/10.1039/c6nj01755j

    Article  Google Scholar 

  78. H.C. Swart, R.E. Kroon, Ultraviolet and visible luminescence from bismuth doped materials. Opt. Mater. X. 2, 100025 (2019). https://doi.org/10.1016/j.omx.2019.100025

    Article  Google Scholar 

  79. A. Yousif, R.M. Jafer, S. Som, M.M. Duvenhage, E. Coetsee, H.C. Swart, Ultra-broadband luminescent from a Bi doped CaO matrix. RSC Adv. 5, 54115–54122 (2015). https://doi.org/10.1039/C5RA09246A

    Article  ADS  Google Scholar 

  80. R. Mueller-Mach, G.O. Mueller, White-light-emitting diodes for illumination 3938, 30–41 (2000).https://doi.org/10.1117/12.382840

  81. Z. Xia, Z. Xu, M. Chen, Q. Liu, Recent developments in the new inorganic solid-state LED phosphors. Dalt. Trans. 45, 11214–11232 (2016). https://doi.org/10.1039/c6dt01230b

    Article  Google Scholar 

  82. P. Dang, S. Liang, G. Li, Y. Wei, Z. Cheng, H. Lian, M. Shang, S.J. Ho, J. Lin, Controllable optical tuning and improvement in Li+, Eu3+-codoped BaSc2O4:Bi3+ based on energy transfer and charge compensation. J. Mater. Chem. C 6, 6449–6459 (2018). https://doi.org/10.1039/c8tc01463a

    Article  Google Scholar 

  83. W. Wang, J. Li, X. Teng, Q. Chen, Luminescence properties of Y3+ stabilized Gd3Al5O12:Tb3+/Ce3+ phosphors with yellow light-emitting for warm white LEDs. J. Lumin. 202, 176–185 (2018). https://doi.org/10.1016/j.jlumin.2018.05.052

    Article  Google Scholar 

  84. A. Garbout, T. Turki, M. Férid, Structural and photoluminescence characteristics of Sm3+ activated RE2Ti2O7 (RE = Gd, La) as orange-red emitting phosphors. J. Lumin. 196, 326–336 (2018). https://doi.org/10.1016/j.jlumin.2017.12.066

    Article  Google Scholar 

  85. Y. Zhang, X. Zhang, L. Zheng, Y. Zeng, Y. Lin, Y. Liu, B. Lei, H. Zhang, Energy transfer and tunable emission of Ca14Al10Zn6O35:Bi3+, Sm3+ phosphor. Mater. Res. Bull. 100, 56–61 (2018). https://doi.org/10.1016/j.materresbull.2017.12.003

    Article  Google Scholar 

  86. L. Feng, Z. Hao, X. Zhang, L. Zhang, G. Pan, Y. Luo, L. Zhang, H. Zhao, J. Zhang, Red emission generation through highly efficient energy transfer from Ce3+ to Mn2+ in CaO for warm white LEDs. Dalt. Trans. 45, 1539–1545 (2016). https://doi.org/10.1039/C5DT04341G

    Article  Google Scholar 

  87. A. Verma, S.K. Pathak, A. Verma, G.V. Bramhe, I.P. Sahu, Tuning of luminescent properties of Zn1-xMgAl10O17: Eux nano phosphor. J. Alloys Compd. 764, 1021–1032 (2018). https://doi.org/10.1016/j.jallcom.2018.06.023

    Article  Google Scholar 

  88. M. Li, J. Zhang, J. Han, Z. Qiu, W. Zhou, L. Yu, Z. Li, S. Lian, Changing Ce3+ Content and codoping Mn2+ induced tunable emission and energy transfer in Ca2.5Sr0.5Al2O6:Ce3+, Mn2+, Inorg. Chem. 56, 241–251 (2017). https://doi.org/10.1021/ACS.INORGCHEM.6B02082/SUPPL_FILE/IC6B02082_SI_003.CIF

  89. Y. Chen, K. Wu, J. He, Z. Tang, J. Shi, Y. Xu, Z.Q. Liu, A bright and moisture-resistant red-emitting Lu3Al5O12:Mn4+, Mg2+ garnet phosphor for high-quality phosphor-converted white LEDs. J. Mater. Chem. C 5, 8828–8835 (2017). https://doi.org/10.1039/c7tc02514a

    Article  Google Scholar 

  90. S. Hachani, B. Moine, A. El-akrmi, M. Férid, Luminescent properties of some ortho- and pentaphosphates doped with Gd3+–Eu3+: potential phosphors for vacuum ultraviolet excitation. Opt. Mater. (Amst). 31, 678–684 (2009).https://doi.org/10.1016/J.OPTMAT.2008.07.011

  91. K. Li, M. Shang, H. Lian, J. Lin, Recent development in phosphors with different emitting colors via energy transfer. J. Mater. Chem. C 4, 5507–5530 (2016). https://doi.org/10.1039/C6TC00436A

    Article  Google Scholar 

  92. J. Zheng, Q. Cheng, S. Wu, Z. Guo, Y. Zhuang, Y. Lu, Y. Li, C. Chen, An efficient blue-emitting Sr5(PO4)3Cl:Eu2+ phosphor for application in near-UV white light-emitting diodes. J. Mater. Chem. C. 3, 11219–11227 (2015). https://doi.org/10.1039/c5tc02482j

    Article  Google Scholar 

  93. H. Guo, B. Devakumar, B. Li, X. Huang, Novel Na3Sc2(PO4)3:Ce3+, Tb3+ phosphors for white LEDs: tunable blue-green color emission, high quantum efficiency and excellent thermal stability. Dye. Pigment 151, 81–88 (2018). https://doi.org/10.1016/j.dyepig.2017.12.051

    Article  Google Scholar 

  94. C.H. Huang, P.J. Wu, J.F. Lee, T.M. Chen, (Ca, Mg, Sr)9Y(PO4)7:Eu2+, Mn2+: phosphors for white-light near-UV LEDs through crystal field tuning and energy transfer. J. Mater. Chem. 21, 10489–10495 (2011). https://doi.org/10.1039/C1JM11018G

    Article  Google Scholar 

  95. S. Liang, P. Dang, G. Li, M.S. Molokeev, Y. Wei, H. Lian, M. Shang, A.A. Al Kheraif, J. Lin, Controllable two-dimensional luminescence tuning in Eu2+, Mn2+ doped (Ca,Sr)9Sc(PO4)7 based on crystal field regulation and energy transfer. J. Mater. Chem. C 6, 6714–6725 (2018). https://doi.org/10.1039/c8tc01825a

  96. D. Kim, D. Park, N. Oh, J. Kim, E.D. Jeong, S.J. Kim, S. Kim, J.C. Park, Luminescent properties of rare earth fully activated apatites, LiRE9(SiO4)6O2 (RE = Ce, Eu, and Tb): site selective crystal field effect. Inorg. Chem. 54, 1325–1336 (2015). https://doi.org/10.1021/ic502113a

    Article  Google Scholar 

  97. P. Ptáček, Introduction to apatites, in Apatites and Their Synthetic Analogues-Synthesis, Structure, Properties and Applications, InTech (2016). https://doi.org/10.5772/62208

  98. H. Ye, M. He, T. Zhou, Q. Guo, J. Zhang, L. Liao, L. Mei, H. Liu, M. Runowski, A novel reddish-orange fluorapatite phosphor, La6-xBa4(SiO4)6F2:xSm3+—structure, luminescence and energy transfer properties. J. Alloys Compd. 757, 79–86 (2018). https://doi.org/10.1016/j.jallcom.2018.05.060

    Article  Google Scholar 

  99. V. Singh, M.S. Pathak, N. Singh, P.K. Singh, H.D. Jirimali, Sol–gel derived green emitting Tb3+ doped Sr2La8(SiO4)6O2 phosphors. Optik 168, 475–480 (2018). https://doi.org/10.1016/j.ijleo.2018.04.072

    Article  ADS  Google Scholar 

  100. Y.H. Kim, P. Arunkumar, S.H. Park, H.S. Yoon, W. Bin Im, Tuning the diurnal natural daylight with phosphor converted white LED—advent of new phosphor blend composition. Mater. Sci. Eng. B Solid-State Mater. Adv. Technol. 193, 4–12 (2015). https://doi.org/10.1016/j.mseb.2014.11.001

  101. Y.K. Lee, J.S. Lee, J. Heo, W. Bin Im, W.J. Chung, Phosphor in glasses with Pb-free silicate glass powders as robust color-converting materials for white LED applications. Opt. Lett. 37, 3276 (2012). https://doi.org/10.1364/OL.37.003276

  102. C. Xu, H. Guan, Y. Song, Z. An, X. Zhang, X. Zhou, Z. Shi, Y. Sheng, H. Zou, Novel highly efficient single-component multi-peak emitting aluminosilicate phosphors co-activated with Ce3+, Tb3+ and Eu2+: Luminescence properties, tunable color, and thermal properties. Phys. Chem. Chem. Phys. 20, 1591–1607 (2018). https://doi.org/10.1039/c7cp07108f

    Article  Google Scholar 

  103. I.V.B. Maggay, K.Y. Yeh, B. Lei, M.G. Brik, M. Piasecki, W.R. Liu, Luminescence properties of Eu2+-activated NaCaBeSi2O6F for white light-emitting diode applications. Mater. Res. Bull. 100, 26–31 (2018). https://doi.org/10.1016/j.materresbull.2017.11.059

    Article  Google Scholar 

  104. S. Dutta, T.M. Chen, An efficient green-emitting Ba5Si2O6Cl6:Eu2+ phosphor for white-light LED application. RSC Adv. 7, 40914–40921 (2017). https://doi.org/10.1039/c7ra07221j

    Article  ADS  Google Scholar 

  105. T. Nakano, Y. Kawakami, K. Uematsu, T. Ishigaki, K. Toda, M. Sato, Novel BaScSi-oxide and oxynitride phosphors for white LED. J. Lumin. 129, 1654–1657 (2009). https://doi.org/10.1016/j.jlumin.2009.04.028

    Article  Google Scholar 

  106. Y. Liu, J. Zhang, C. Zhang, J. Xu, G. Liu, J. Jiang, H. Jiang, Ba9Lu2Si6O24:Ce3+ An efficient green phosphor with high thermal and radiation stability for solid-state lighting. Adv. Opt. Mater. 3, 1096–1101 (2015). https://doi.org/10.1002/adom.201500078

    Article  Google Scholar 

  107. S.A. Khan, Z. Hao, H. Wei-Wei, L.Y. Hao, X. Xu, N.Z. Khan, S. Agathopoulos, Novel single-phase full-color emitting Ba9Lu2Si6O24:Ce3+/Mn2+/Tb3+ phosphors for white LED applications. J. Mater. Sci. 52, 10927–10937 (2017). https://doi.org/10.1007/s10853-017-1162-y

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vijay Kumar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ayoub, I., Sehgal, R., Sharma, V., Sehgal, R., Swart, H.C., Kumar, V. (2023). Rare-Earth Doped Inorganic Materials for Light-Emitting Applications. In: Kumar, V., Sharma, V., Swart, H.C. (eds) Advanced Materials for Solid State Lighting. Progress in Optical Science and Photonics, vol 25. Springer, Singapore. https://doi.org/10.1007/978-981-99-4145-2_1

Download citation

Publish with us

Policies and ethics