Skip to main content

Detection of Jointly Sparse Signals via Locally Most Powerful Tests with Gaussian Noise

  • Chapter
  • First Online:
Study on Signal Detection and Recovery Methods with Joint Sparsity

Part of the book series: Springer Theses ((Springer Theses))

  • 94 Accesses

Abstract

In recent years, compressive sensing (CS) has emerged as a new paradigm for sparse signal processing, which aims at obtaining valuable information of sparse signals from a small number of measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Baraniuk RG (2007) Compressive sensing. IEEE Signal Process Mag 24(4):118–121

    Article  Google Scholar 

  2. Donoho DL (2006) Compressed sensing. IEEE Trans Inf Theory 52(4):1289–1306

    Article  MathSciNet  MATH  Google Scholar 

  3. Eldar Y C, Kutyniok G. Compressed sensing: theory and applications. Cambridge university Press, 2012.

    Google Scholar 

  4. Duarte M F, Davenport M A, Wakin M B, et al. Sparse signal detection from incoherent projections. in Proceedings of International Conference on Acoustics Speech and Signal Processing, 2006, IEEE: 305–308.

    Google Scholar 

  5. Davenport MA, Boufounos PT, Wakin MB et al (2010) Signal processing with compressive measurements. IEEE Journal of Selected topics in Signal processing 4(2):445–460

    Article  Google Scholar 

  6. Wimalajeewa T, Chen H, Varshney P K. Performance analysis of stochastic signal detection with compressive measurements. In Proceedings of Forty Fourth Asilomar Conference on Signals, Systems and Computers: 2010, IEEE: 813–817.

    Google Scholar 

  7. Sun H, Nallanathan A, Wang CX et al (2013) Wideband spectrum sensing for cognitive radio networks: a survey. IEEE Wirel Commun 20(2):74–81

    Article  Google Scholar 

  8. Zeng F, Li C, Tian Z (2010) Distributed compressive spectrum sensing in cooperative multihop cognitive networks. IEEE Journal of Selected Topics in Signal Processing 5(1):37–48

    Article  Google Scholar 

  9. Wang X, Li G, Varshney PK (2018) Detection of sparse signals in sensor networks via locally most powerful tests. IEEE Signal Process Lett 25(9):1418–1422

    Article  Google Scholar 

  10. Wang X, Li G, Varshney PK (2019) Detection of sparse stochastic signals with quantized measurements in sensor networks. IEEE Trans Signal Process 67(8):2210–2220

    Article  MathSciNet  MATH  Google Scholar 

  11. Wang X, Li G, Quan C et al (2019) Distributed Detection of Sparse Stochastic Signals With Quantized Measurements: The Generalized Gaussian Case. IEEE Trans Signal Process 67(18):4886–4898

    Article  MathSciNet  MATH  Google Scholar 

  12. Li G, Zhang H, Wimalajeewa T, et al. On the detection of sparse signals with sensor networks based on Subspace Pursuit. In Proceedings of IEEE Global Conference on Signal and Information Processing, 2014: 438–442.

    Google Scholar 

  13. Zhao W, Li G. On the detection probability of sparse signals with sensor networks based on distributed subspace pursuit. in Proceedings of IEEE China Summit and International Conference on Signal and Information Processing, 2015: 324–328.

    Google Scholar 

  14. Wimalajeewa T, Varshney PK (2014) OMP based joint sparsity pattern recovery under communication constraints. IEEE Trans Signal Process 62(19):5059–5072

    Article  MathSciNet  MATH  Google Scholar 

  15. Wimalajeewa T, Varshney PK (2016) Sparse signal detection with compressive measurements via partial support set estimation. IEEE Transactions on Signal and Information Processing over Networks 3(1):46–60

    Article  MathSciNet  Google Scholar 

  16. Haupt J, Bajwa WU, Rabbat M et al (2008) Compressed sensing for networked data. IEEE Signal Process Mag 25(2):92–101

    Article  Google Scholar 

  17. Kailkhura B, Wimalajeewa T, Varshney PK (2016) Collaborative compressive detection with physical layer secrecy constraints. IEEE Trans Signal Process 65(4):1013–1025

    Article  MathSciNet  MATH  Google Scholar 

  18. Hariri A, Babaie-Zadeh M (2017) Compressive detection of sparse signals in additive white Gaussian noise without signal reconstruction. Signal Process 131:376–385

    Article  Google Scholar 

  19. Kay SM (1998) Fundamentals of Statistical Signal Processing: Detection Theory. Prentice-Hall, Upper Saddle River, NJ

    Google Scholar 

  20. Kay SM, Gabriel JR (2002) Optimal invariant detection of a sinusoid with unknown parameters. IEEE Trans Signal Process 50(1):27–40

    Article  MathSciNet  MATH  Google Scholar 

  21. Wang X, Li G, Varshney PK (2019) Distributed detection of weak signals from one-bit measurements under observation model uncertainties. IEEE Signal Process Lett 26(3):415–419

    Article  Google Scholar 

  22. Kassam S A. Signal detection in non-Gaussian noise. Springer Science & Business Media, 2012.

    Google Scholar 

  23. Papoulis A, Pillai S U. Probability, random variables, and stochastic processes. Tata McGraw-Hill Education, 2002.

    Google Scholar 

  24. Kay SM (1998) Fundamentals of Statistical Signal Processing: Estimation Theory. Prentice-Hall, Upper Saddle River, NJ

    MATH  Google Scholar 

  25. Stein MS, Bar S, Nossek JA et al (2018) Performance analysis for channel estimation with 1-bit ADC and unknown quantization threshold. IEEE Trans Signal Process 66(10):2557–2571

    Article  MathSciNet  MATH  Google Scholar 

  26. Duarte C, Barner KE, Goossen K (2016) Design of IIR multi-notch filters based on polynomially-represented squared frequency response. IEEE Trans Signal Process 64(10):2613–2623

    Article  MathSciNet  MATH  Google Scholar 

  27. Gao F, Guo L, Li H et al (2014) Quantizer design for distributed GLRT detection of weak signal in wireless sensor networks. IEEE Trans Wireless Commun 14(4):2032–2042

    Article  Google Scholar 

  28. Hui Q, Zhang H. Global convergence analysis of swarm optimization using paracontraction and semistability theory. In Proceedings of IEEE American Control Conference, 2016: 2900–2905.

    Google Scholar 

  29. Zayyani H, Haddadi F, Korki M (2016) Double detector for sparse signal detection from one-bit compressed sensing measurements. IEEE Signal Process Lett 23(11):1637–1641

    Article  Google Scholar 

  30. Cheung RCY, Aue A, Lee TCM (2017) Consistent estimation for partition-wise regression and classification models. IEEE Trans Signal Process 65(14):3662–3674

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xueqian Wang .

Rights and permissions

Reprints and permissions

Copyright information

© 2024 Tsinghua University Press

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wang, X. (2024). Detection of Jointly Sparse Signals via Locally Most Powerful Tests with Gaussian Noise. In: Study on Signal Detection and Recovery Methods with Joint Sparsity. Springer Theses. Springer, Singapore. https://doi.org/10.1007/978-981-99-4117-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-4117-9_2

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-4116-2

  • Online ISBN: 978-981-99-4117-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics