Skip to main content

Alginate-Based Hybrid Materials for the Treatment of Textile Dyes

  • Chapter
  • First Online:
Nanohybrid Materials for Treatment of Textiles Dyes

Part of the book series: Smart Nanomaterials Technology ((SNT))

  • 196 Accesses

Abstract

Uncontrolled anthropogenic activities like rapid industrialization and urbanization are among the most important causes of water pollution. The major constituents of polluted water are several kinds of organic dyes, mainly discharged by textile and dyeing industries. Textile industries convert fiber into fabric and involve many chemical processes and several synthetic and natural chemicals. The fabric produced is then subjected to printing, dying, or combination of both processes to convert it into clothes. During the dying and printing processes, some of the dyes are released, as effluents, into water bodies. Water pollution due to industrial discharge is a serious concern to the environment and human health. The removal of these dyes from wastewater is a major issue nowadays. Many methods have been developed and applied for the removal of dyes from contaminated water, but each one of them have its own merits and demerits in terms of operation, efficiency, design, and total cost. This chapter provides a brief review of the use of alginates and alginate-based hybrid materials for the removal of textile dyes from wastewater.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Industrial Applications of Marine Biopolymers (2017) 1st edn. CRC Press, Boca Raton

    Google Scholar 

  2. Haug A, Smidsrod O (1967) Strontium-calcium selectivity of alginates. Nature 215(5102):757. https://doi.org/10.1038/215757a0

    Article  CAS  Google Scholar 

  3. Perullini M, Calcabrini M, Jobbágy M, Bilmes SA (2015) Alginate/porous silica matrices for the encapsulation of living organisms: tunable properties for biosensors, modular bioreactors, and bioremediation devices. Open Material Sciences 2(1):3–12. https://doi.org/10.1515/mesbi-2015-0003

    Article  Google Scholar 

  4. Hoagland DR, Lieb LL (1915) The complex carbohydrates and forms of sulphur in marine algae of the pacific coast. J Biol Chem 23(1):287–297. https://doi.org/10.1016/S0021-9258(18)87617-7

    Article  CAS  Google Scholar 

  5. Fischer FG, Dörfel H (1955) Die Polyuronsäuren der Braunalgen (Kohlenhydrate der Algen I). 302 (Jahresband):186–203. https://doi.org/10.1515/bchm2.1955.302.1-2.186

  6. Haug A, Larsen B, Smidsrød O (1974) Uronic acid sequence in alginate from different sources. Carbohyd Res 32(2):217–225. https://doi.org/10.1016/S0008-6215(00)82100-X

    Article  CAS  Google Scholar 

  7. Draget KI, Skjåk Bræk G, Smidsrød O (1994) Alginic acid gels: the effect of alginate chemical composition and molecular weight. Carbohydrate Polymers 25(1):31–38. https://doi.org/10.1016/0144-8617(94)90159-7

  8. Szekalska M, Puciłowska A, Szymańska E, Ciosek P, Winnicka K (2016) Alginate: current use and future perspectives in pharmaceutical and biomedical applications. International Journal of Polymer Science 2016:1–17. https://doi.org/10.1155/2016/7697031

    Article  CAS  Google Scholar 

  9. Rashedy S, Abd El Hafez MSM, Dar M, Cotas J, Pereira L, Raymundo A (2021) Evaluation and characterization of alginate extracted from brown seaweed collected in the Red Sea

    Google Scholar 

  10. Skjåk-Braek G, Grasdalen H, Larsen B (1986) Monomer sequence and acetylation pattern in some bacterial alginates. Carbohydr Res 154:239–250. https://doi.org/10.1016/s0008-6215(00)90036-3

    Article  Google Scholar 

  11. Xu Z, Wang B, Xu Z (2014) Encyclopedia of biomedical polymers and polymeric biomaterials-processing methods and applications. https://doi.org/10.1081/E-EBPP-120050032

  12. Goh CH, Heng PWS, Chan LW (2012) Alginates as a useful natural polymer for microencapsulation and therapeutic applications. Carbohyd Polym 88(1):1–12. https://doi.org/10.1016/j.carbpol.2011.11.012

    Article  CAS  Google Scholar 

  13. Hecht H, Srebnik S (2016) Structural characterization of sodium alginate and calcium alginate. Biomacromol 17(6):2160–2167. https://doi.org/10.1021/acs.biomac.6b00378

    Article  CAS  Google Scholar 

  14. Hasnain M, Nayak A, Yadav M, Ahmadi Y, Milivojevic M, Pajić-Lijaković I, Branko B, Manzano V, Pacho N, Tasqué J, Beatriz N, Accorso D, Singh V, Singh A, El-Sherbiny I, Abd M, Aziz A, Abdelsalam E, Garcia N, Dmour I (2019) Alginates versatile polymers in biomedical applications and therapeutics chemically modified alginates for advanced biomedical applications, p 335

    Google Scholar 

  15. Zhu B, Yin H (2015) Alginate lyase: review of major sources and classification, properties, structure-function analysis and applications. Bioengineered 6(3):125–131. https://doi.org/10.1080/21655979.2015.1030543

    Article  CAS  Google Scholar 

  16. Forster RE, Thürmer F, Wallrapp C, Lloyd AW, Macfarlane W, Phillips GJ, Boutrand JP, Lewis AL (2010) Characterisation of physico-mechanical properties and degradation potential of calcium alginate beads for use in embolisation. J Mater Sci Mater Med 21(7):2243–2251. https://doi.org/10.1007/s10856-010-4080-y

    Article  CAS  Google Scholar 

  17. Kristiansen KA, Potthast A, Christensen BE (2010) Periodate oxidation of polysaccharides for modification of chemical and physical properties. Carbohydr Res 345(10):1264–1271. https://doi.org/10.1016/j.carres.2010.02.011

    Article  CAS  Google Scholar 

  18. Yaqoob AA, Parveen T, Umar K, Mohamad Ibrahim MNM (2020) Role of nanomaterials in the treatment of wastewater: a review. Water 12(2):495–499

    Article  CAS  Google Scholar 

  19. Yaqoob AA, Ahmad H, Parveen T, Ahmad A, Oves M, Ismail IM, Qari HA, Umar K, Mohamad Ibrahim MNM (2020) Recent advances in metal decorated nanomaterials and their various biological applications: a review. Front Chem 8:341–366

    Article  CAS  Google Scholar 

  20. Idris MO, Yaqoob AA, Ibrahim MNM, Ahmad A, Alshammari MB (2023) Introduction of adsorption techniques for heavy metals remediation. Emerging techniques for treatment of toxic metals from wastewater, 1st edn. Elsevier, Amsterdam, pp 1–18

    Google Scholar 

  21. Yaqoob AA, Ibrahim MNM, Ahmad A, Reddy AVB (2021) Toxicology and environmental application of carbon nanocomposite. Environmental remediation through carbon based nano composites. Springer, New York, pp 1–18

    Google Scholar 

  22. Dawood SA, Sen TK (2013) Review on dye removal from its aqueous solution into alternative cost effective and non-conventional adsorbents

    Google Scholar 

  23. Pandey S (2017) A comprehensive review on recent developments in bentonite-based materials used as adsorbents for wastewater treatment. J Mol Liq 241:1091–1113. https://doi.org/10.1016/j.molliq.2017.06.115

    Article  CAS  Google Scholar 

  24. Rafatullah M, Sulaiman O, Hashim R, Ahmad A (2010) Adsorption of methylene blue on low-cost adsorbents: a review. J Hazard Mater 177(1):70–80. https://doi.org/10.1016/j.jhazmat.2009.12.047

    Article  CAS  Google Scholar 

  25. Desore A, Narula SA (2018) An overview on corporate response towards sustainability issues in textile industry. Environ Dev Sustain 20(4):1439–1459. https://doi.org/10.1007/s10668-017-9949-1

    Article  Google Scholar 

  26. Bhatia SC (2017). In: Devraj S (ed) Pollution Control In Textile Industry, 1st edn. WPI Publishing, New York. https://doi.org/10.1201/9781315148588

  27. Kant R (2012) Textile dyeing industry an environmental hazard. Natural Science 04. https://doi.org/10.4236/ns.2012.41004

  28. Orts F, del Río AI, Molina J, Bonastre J, Cases F (2018) Electrochemical treatment of real textile wastewater: Trichromy Procion HEXL®. J Electroanal Chem 808:387–394. https://doi.org/10.1016/j.jelechem.2017.06.051

    Article  CAS  Google Scholar 

  29. Umar K, Yaqoob AA, Ibrahim M, Parveen T, Safian M (2020) Environmental applications of smart polymer composites. Smart Polym Nanocompos Biomed Environ Appl 15:295–320

    Google Scholar 

  30. Alamzeb M, Tullah M, Ali S, Ihsanullah KB, Setzer WN, Al-Zaqri N, Ibrahim MNM (2022) Kinetic, thermodynamic and adsorption isotherm studies of detoxification of Eriochrome Black T dye from wastewater by native and washed garlic peel. Water 14(22):3713

    Article  CAS  Google Scholar 

  31. Samchetshabam G, Hussan A, Gon Choudhury T, Gita S, Soholars P, Hussan A (2017) Impact of textile dyes waste on aquatic environments and its treatment

    Google Scholar 

  32. Ejhieh AN, Khorsandi M (2010) Photodecolorization of Eriochrome Black T using NiS-P zeolite as a heterogeneous catalyst. J Hazard Mater 176(1–3):629–637. https://doi.org/10.1016/j.jhazmat.2009.11.077

    Article  CAS  Google Scholar 

  33. Islam A, Ahmad A, Laskar MA (2012) Characterization of a chelating resin functionalized via azo spacer and its analytical applicability for the determination of trace metal ions in real matrices. Journal of Applied Polymer Science 123(6):3448–3458. https://doi.org/10.1002/app.34844

    Article  CAS  Google Scholar 

  34. Yaseen DA, Scholz M (2019) Textile dye wastewater characteristics and constituents of synthetic effluents: a critical review. Int J Environ Sci Technol 16(2):1193–1226. https://doi.org/10.1007/s13762-018-2130-z

    Article  CAS  Google Scholar 

  35. Berradi M, Hsissou R, Khudhair M, Assouag M, Cherkaoui O, El Bachiri A, El Harfi A (2019) Textile finishing dyes and their impact on aquatic environs. Heliyon 5(11):e02711. https://doi.org/10.1016/j.heliyon.2019.e02711

    Article  Google Scholar 

  36. Al-Tohamy R, Ali SS, Li F, Okasha KM, Mahmoud YAG, Elsamahy T, Jiao H, Fu Y, Sun J (2022) A critical review on the treatment of dye-containing wastewater: ecotoxicological and health concerns of textile dyes and possible remediation approaches for environmental safety. Ecotoxicol Environ Saf 231:113160. https://doi.org/10.1016/j.ecoenv.2021.113160

    Article  CAS  Google Scholar 

  37. Safian MT, Umar K, Parveen T, Yaqoob AA, Ibrahim MNM (2021) Biomedical applications of smart polymer composites (Chap. 8). In: Smart polymer nanocomposites: biomedical and environmental applications. Woodhead Publishing Series in Composites Science and Engineering, Elsevier Inc., Cambridge, pp 183–204

    Google Scholar 

  38. Semeraro P, Fini P, D’Addabbo M, Rizzi V, Cosma P (2017) Removal from wastewater and recycling of azo textile dyes by alginate-chitosan beads. International Journal of Environment, Agriculture and Biotechnology 2:1835–1850. https://doi.org/10.22161/ijeab/2.4.48

    Article  Google Scholar 

  39. Ganesan V, Girija E (2015) Investigations on textile dye adsorption onto hydroxyapatite-alginate nanocomposite prepared by a modified method. Cellul Chem Technol 49:87–91

    Google Scholar 

  40. Yadav S, Asthana A, Chakraborty R, Jain B, Singh AK, Carabineiro SAC, Susan M (2020) Cationic dye removal using novel magnetic/activated charcoal/β-cyclodextrin/alginate polymer nanocomposite. Nanomaterials (Basel) 10(1). https://doi.org/10.3390/nano10010170.

  41. Lincy A, Jegathambal P, Mkandawire M, MacQuarrie SL (2020) Nano bioremediation of textile dye effluentusing magnetite nanoparticles encapsulated alginate beads

    Google Scholar 

  42. Mahmoodi NM (2011) Equilibrium, kinetics, and thermodynamics of dye removal using alginate in binary systems. J Chem Eng Data 56(6):2802–2811. https://doi.org/10.1021/je101276x

    Article  CAS  Google Scholar 

  43. Vijayaraghavan G, Shanthakumar S (2018) Effective removal of acid black 1 dye in textile effluent using alginate from brown algae as a coagulant. Iranian Journal of Chemistry and Chemical Engineering 37(4):145–151. https://doi.org/10.30492/ijcce.2018.35074

  44. Parlayıcı Ş (2022) Natural mineral and biopolymers based adsorbent for cationic dyes removal: glutaraldehyde crosslinked alginate/kaolin bead. Journal of Materials and Environmental Science 13(1):95–114

    Google Scholar 

  45. ALSamman MT, Sánchez J (2022) Chitosan- and alginate-based hydrogels for the adsorption of anionic and cationic dyes from water. Polymers 14 (8):1498

    Google Scholar 

  46. Amina A, Hassina Z-B, Viseras C, Sánchez-Polo M (2018) Bioadsorbent beads prepared from activated biomass/alginate for enhanced removal of cationic dye from water medium: kinetics, equilibrium and thermodynamic studies. Journal of Molecular Liquids 256. https://doi.org/10.1016/j.molliq.2018.02.073

  47. Marzban N, Moheb A, Filonenko S, Hosseini SH, Nouri MJ, Libra J, Farru G (2021) Intelligent modeling and experimental study on methylene blue adsorption by sodium alginate-kaolin beads. International Journal of Biological Macromolecules 186. https://doi.org/10.1016/j.ijbiomac.2021.07.006

  48. Kim H, Purev O, Myung E, Choi N, Cho K (2022) Removal of methyl red from aqueous solution using polyethyleneimine crosslinked alginate beads with waste foundry dust as a magnetic material. International Journal of Environmental Research and Public Health 19(15). https://doi.org/10.3390/ijerph19159030

  49. Dutta S, Gupta B, Srivastava SK, Gupta AK (2021) Recent advances on the removal of dyes from wastewater using various adsorbents: a critical review. Materials Advances 2(14):4497–4531. https://doi.org/10.1039/D1MA00354B

    Article  CAS  Google Scholar 

  50. Hassani A, Soltani RDC, Karaca S, Khataee A (2015) Preparation of montmorillonite–alginate nanobiocomposite for adsorption of a textile dye in aqueous phase: isotherm, kinetic and experimental design approaches. J Ind Eng Chem 21:1197–1207. https://doi.org/10.1016/j.jiec.2014.05.034

    Article  CAS  Google Scholar 

  51. Carrillo Cortes S, Claudio-Rizo J, Burciaga-Montemayor N, Caldera Villalobos M (2022) Removal of textile dyes from aqueous solutions and wastewaters using biobased interpenetrating networks of alginate, collagen, and polyurethane. Asian Journal of Applied Science and Technology 06:164–174. https://doi.org/10.38177/ajast.2022.6119

    Article  Google Scholar 

  52. Vijayaraghavan G, Shanthakumar S (2020) Removal of crystal violet dye in textile effluent by coagulation using algal alginate from brown algae Sargassum sp. Desalination and Water Treatment 196:402–408. https://doi.org/10.5004/dwt.2020.25569

    Article  CAS  Google Scholar 

  53. Fabryanty R, Valencia C, Soetaredjo FE, Putro JN, Santoso SP, Kurniawan A, Ju Y-H, Ismadji S (2017) Removal of crystal violet dye by adsorption using bentonite—alginate composite. J Environ Chem Eng 5(6):5677–5687. https://doi.org/10.1016/j.jece.2017.10.057

    Article  CAS  Google Scholar 

  54. Oussalah A, Boukerroui A (2020) Alginate-bentonite beads for efficient adsorption of methylene blue dye. Euro-Mediterranean Journal for Environmental Integration 5(2):31. https://doi.org/10.1007/s41207-020-00165-z

    Article  Google Scholar 

  55. Gap R, Ong S-T (2018) Application of experimental design for dyes removal in aqueous environment by using sodium alginate-TiO2 thin film. Chemical Data Collections 15–16:32–40. https://doi.org/10.1016/j.cdc.2018.03.002

    Article  Google Scholar 

  56. Rocher V, Bee A, Siaugue JM, Cabuil V (2010) Dye removal from aqueous solution by magnetic alginate beads crosslinked with epichlorohydrin. J Hazard Mater 178(1–3):434–439. https://doi.org/10.1016/j.jhazmat.2010.01.100

    Article  CAS  Google Scholar 

  57. Radoor S, Karayil J, Parameswaranpillai J, Siengchin S (2020) Removal of anionic dye Congo red from aqueous environment using polyvinyl alcohol/sodium alginate/ZSM-5 zeolite membrane. Sci Rep 10(1):15452. https://doi.org/10.1038/s41598-020-72398-5

    Article  Google Scholar 

  58. İnal M, Erduran N (2015) Removal of various anionic dyes using sodium alginate/poly(N-vinyl-2-pyrrolidone) blend hydrogel beads. Polym Bull 72(7):1735–1752. https://doi.org/10.1007/s00289-015-1367-7

    Article  CAS  Google Scholar 

  59. Minh VX, Hanh LTM, Lan PT, Van Bien T, Dung NT (2020) Synthesis of Fe3O4/Alginate composite for dye removal from aqueous solution. Vietnam Journal of Chemistry 58(2):185–190. https://doi.org/10.1002/vjch.201900151

  60. Nigiz FU (2019) Synthesis and characterization of clinoptilolite-alginate beads for dye removal from water. Water Practice and Technology 14(2):311–318. https://doi.org/10.2166/wpt.2019.015

  61. Djebri N, Boutahala M, Chelali N-E, Boukhalfa N, Zeroual L (2016) Enhanced removal of cationic dye by calcium alginate/organobentonite beads: modeling, kinetics, equilibriums, thermodynamic and reusability studies. Int J Biol Macromol 92:1277–1287. https://doi.org/10.1016/j.ijbiomac.2016.08.013

    Article  CAS  Google Scholar 

  62. Aravindhan R, Fathima NN, Rao JR, Nair BU (2007) Equilibrium and thermodynamic studies on the removal of basic black dye using calcium alginate beads. Colloids Surf, A 299(1):232–238. https://doi.org/10.1016/j.colsurfa.2006.11.045

    Article  CAS  Google Scholar 

  63. Rocher V, Siaugue J-M, Cabuil V, Bee A (2008) Removal of organic dyes by magnetic alginate beads. Water Res 42(4):1290–1298. https://doi.org/10.1016/j.watres.2007.09.024

    Article  CAS  Google Scholar 

  64. Kazemi J, Javanbakht V (2020) Alginate beads impregnated with magnetic Chitosan@Zeolite nanocomposite for cationic methylene blue dye removal from aqueous solution. Int J Biol Macromol 154:1426–1437. https://doi.org/10.1016/j.ijbiomac.2019.11.024

    Article  CAS  Google Scholar 

  65. Robinson T, McMullan G, Marchant R, Nigam P (2001) Remediation of dyes in textile effluent: a critical review on current treatment technologies with a proposed alternative. Biores Technol 77(3):247–255. https://doi.org/10.1016/S0960-8524(00)00080-8

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Alamzeb .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Alamzeb, M., Khan, B., Subhani, H. (2023). Alginate-Based Hybrid Materials for the Treatment of Textile Dyes. In: Ahmad, A., Jawaid, M., Mohamad Ibrahim, M.N., Yaqoob, A.A., Alshammari, M.B. (eds) Nanohybrid Materials for Treatment of Textiles Dyes. Smart Nanomaterials Technology. Springer, Singapore. https://doi.org/10.1007/978-981-99-3901-5_19

Download citation

Publish with us

Policies and ethics