Skip to main content

The Impact of Textile Dyes on the Environment

  • Chapter
  • First Online:
Nanohybrid Materials for Treatment of Textiles Dyes

Abstract

Textile industries use large amounts of natural and synthetic dyes for fabric processing. These dyes have been used to brighten clothes for more than 4000 years, from ancient Egypt to the present day. The application of dyes in the textile industry is expanding day by day. These colored effluents used in the textile industry are highly salted and heavily contaminated and are released into the environment in massive quantities. Due to the inefficiency of the dyeing process, up to 200,000 tons of these colors are wasted as effluents every year in the textile industry during dyeing and finishing operations. Significant volumes of dyes are released into waterbodies by the textile industry, causing substantial environmental pollution. According to estimates, 12–15% of these dyes are discharged into manufacturing processes’ effluents, contaminating the environment. So, there is a clear connection between the textile industry and environmental pollution. In this chapter, we have focused on the toxicities of textile dyes, including their impact on water quality parameters such as pH, biochemical oxygen demand (BOD), chemical oxygen demand (COD), total organic carbon (TOC), and suspended solids (TSS), followed by their impact on animal health (both land and aquatic animals), fisheries, plant (terrestrial and aquatic flora) growth and development, as well as on microbiota. To mitigate the harmful effects of textile dyes, it is highly promising to develop techniques for the treatment of textile dyes. The application of nanohybrid materials may play an important role in that case.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Adinew B (2012) Textile effluent treatment and decolorization techniques—a review. Bulgarian J Sci Educ 21(3):434–456

    CAS  Google Scholar 

  2. Al-Rubiay KK, Jaber NN, Al-Mhaawe B, Alrubaiy LK (2008) Antimicrobial efficacy of henna extracts. Oman Med J 23(4):253

    Google Scholar 

  3. Al-Tohamy R, Ali SS, Li F, Okasha KM, Mahmoud YA-G, Elsamahy T, Jiao H, Fu Y, Sun J (2022) A critical review on the treatment of dye-containing wastewater: ecotoxicological and health concerns of textile dyes and possible remediation approaches for environmental safety. Ecotox Environ Safe 231:113160

    Article  CAS  Google Scholar 

  4. Aldalbahi A, El-Naggar ME, El-Newehy MH, Rahaman M, Hatshan MR, Khattab TA (2021) Effects of technical textiles and synthetic nanofibers on environmental pollution. Polymers 13(1):155

    Article  CAS  Google Scholar 

  5. Ali SS, Al-Tohamy R, Sun J (2022) Performance of Meyerozyma caribbica as a novel manganese peroxidase-producing yeast inhabiting wood-feeding termite gut symbionts for azo dye decolorization and detoxification. Sci Total Environ 806:150665

    Article  CAS  Google Scholar 

  6. Amer OA, Ali SS, Azab M, El-Shouny WA, Sun J, Mahmoud YA-G (2022) Exploring new marine bacterial species, Alcaligenes faecalis Alca F2018 valued for bioconversion of shrimp chitin to chitosan for concomitant biotechnological applications. Int J Biol Macromol 196:35–45

    Article  CAS  Google Scholar 

  7. Amte G, Mhaskar TV (2012) Studies on textile-dyeing effluent from Bhiwandi city, Dist: Thane, Maharashtra India. I Control Pollution 28(2):197–199

    CAS  Google Scholar 

  8. Arshad H, Imran M, Ashraf M (2020) Toxic effects of Red-S3B dye on soil microbial activities, wheat yield, and their alleviation by pressmud application. Ecotox Environ Safe 204:111030

    Article  CAS  Google Scholar 

  9. Ayalew H, Reda G, Gashaw T, Babu N, Upadhyay RK (2014) Antimicrobial and dyeing properties of reactive dyes with thiazolidinon-4-one nucleus. Int Scholarly Res. Notices 2014:894250

    Google Scholar 

  10. Azmi W, Sani RK, Banerjee UC (1998) Biodegradation of triphenylmethane dyes. Enzyme Microb Tech 22(3):185–191

    Article  CAS  Google Scholar 

  11. Babu BR, Parande A, Raghu S, Kumar TP (2007) Cotton textile processing: waste generation and effluent treatment. J Cotton Sci 11(3):141–153

    CAS  Google Scholar 

  12. Bae JS, Freeman HS (2007) Aquatic toxicity evaluation of copper-complexed direct dyes to the Daphnia magna. Dyes Pigments 73(1):126–132

    Article  CAS  Google Scholar 

  13. Balakrishnan VK, Shirin S, Aman AM, de Solla SR, Mathieu-Denoncourt J, Langlois VS (2016) Genotoxic and carcinogenic products arising from reductive transformations of the azo dye, Disperse Yellow 7. Chemosphere 146:206–215

    Article  CAS  Google Scholar 

  14. Bar-On YM, Phillips R, Milo R (2018) The biomass distribution on Earth. Proc Natl Acad Sci 115(25):6506–6511

    Article  CAS  Google Scholar 

  15. Begum R, Zaman M, Mondol A, Islam M, Hossain M (2011) Effects of textile industrial waste water and uptake of nutrients on the yield of rice. Bangladesh J Agric Res 36(2):319–331

    Article  Google Scholar 

  16. Ben Mansour H, Houas I, Montassar F, Ghedira K, Barillier D, Mosrati R, Chekir-Ghedira L (2012) Alteration of in vitro and acute in vivo toxicity of textile dyeing wastewater after chemical and biological remediation. Environ Sci Pollut R 19(7):2634–2643

    Article  CAS  Google Scholar 

  17. Benkhaya S, M’rabet S, El Harfi A (2020) A review on classifications, recent synthesis and applications of textile dyes. Inorg Chem Commun 115:107891

    Article  CAS  Google Scholar 

  18. Berradi M, Hsissou R, Khudhair M, Assouag M, Cherkaoui O, El Bachiri A, El Harfi A (2019) Textile finishing dyes and their impact on aquatic environs. Heliyon 5(11):e02711

    Article  Google Scholar 

  19. Bhatia D, Sharma NR, Singh J, Kanwar RS (2017) Biological methods for textile dye removal from wastewater: a review. Crit Rev Env Sci Tec 47(19):1836–1876

    Article  CAS  Google Scholar 

  20. Bhattacharya S, Gupta AB, Gupta A, Pandey A (2018) Introduction to water remediation: importance and methods. In: Water remediation. Springer, pp 3–8

    Google Scholar 

  21. Boulos RA (2013) Antimicrobial dyes and mechanosensitive channels. Antonie Van Leeuwenhoek 104(2):155–167

    Article  CAS  Google Scholar 

  22. Bragulat M, Abarca M, Bruguera M, Caba es F (1991) Dyes as fungal inhibitors: effect on colony diameter. Appl Environ Microbiol 57(9):2777–2780

    Google Scholar 

  23. Brik M, Schoeberl P, Chamam B, Braun R, Fuchs W (2006) Advanced treatment of textile wastewater towards reuse using a membrane bioreactor. Process Biochem 41(8):1751–1757

    Article  CAS  Google Scholar 

  24. Brock T, Groteklaes M, Mischke P (2000) European coatings handbook. Vincentz Network GmbH & Co KG

    Google Scholar 

  25. Brüschweiler BJ, Merlot C (2017) Azo dyes in clothing textiles can be cleaved into a series of mutagenic aromatic amines which are not regulated yet. Regul Toxicol Pharm 88:214–226

    Article  Google Scholar 

  26. Carignani G, Lancashire WE, Griffiths DE (1977) Extra-chromosomal inheritance of rhodamine 6G resistance in Saccharomyces cerevisiae. Mol Gen Genet 151(1):49–56

    Article  CAS  Google Scholar 

  27. Cerniglia CE, Zhuo Z, Manning BW, Federle TW, Heflich RH (1986) Mutagenic activation of the benzidine-based dye direct black 38 by human intestinal microflora. Mutat Res 175(1):11–16

    Article  CAS  Google Scholar 

  28. Chandanshive VV, Kadam SK, Khandare RV, Kurade MB, Jeon B-H, Jadhav JP, Govindwar SP (2018) In situ phytoremediation of dyes from textile wastewater using garden ornamental plants, effect on soil quality and plant growth. Chemosphere 210:968–976

    Article  CAS  Google Scholar 

  29. Chandanshive VV, Rane NR, Tamboli AS, Gholave AR, Khandare RV, Govindwar SP (2017) Co-plantation of aquatic macrophytes Typha angustifolia and Paspalum scrobiculatum for effective treatment of textile industry effluent. J Hazard Mater 338:47–56

    Article  CAS  Google Scholar 

  30. Chen H (2006) Recent advances in azo dye degrading enzyme research. Curr Protein Pept Sci 7(2):101–111

    Article  CAS  Google Scholar 

  31. Chequer FMD, Lizier TM, de Felício R, Zanoni MVB, Debonsi HM, Lopes NP, de Oliveira DP (2015) The azo dye Disperse Red 13 and its oxidation and reduction products showed mutagenic potential. Toxicol In Vitro 29(7):1906–1915

    Article  CAS  Google Scholar 

  32. Christie R (2007) Environmental aspects of textile dyeing. Elsevier

    Book  Google Scholar 

  33. Christie R (2014) Colour chemistry. Royal Society of Chemistry

    Google Scholar 

  34. Chung K, Fulk G, Andrews A (1978) The mutagenicity of methyl orange and metabolites produced by intestinal anaerobes. Mutat Res 58:375–379

    Article  CAS  Google Scholar 

  35. Clark M (2011) Handbook of textile and industrial dyeing: principles, processes and types of dyes. Elsevier

    Book  Google Scholar 

  36. Copaciu F, Opriş O, Coman V, Ristoiu D, Niinemets Ü, Copolovici L (2013) Diffuse water pollution by anthraquinone and azo dyes in environment importantly alters foliage volatiles, carotenoids and physiology in wheat (Triticum aestivum). Water Air Soil Pollut 224(3):1–11

    Article  CAS  Google Scholar 

  37. Dellamatrice PM, Silva-Stenico ME, Moraes LAB, Fiore MF, Monteiro RTR (2017) Degradation of textile dyes by cyanobacteria. Braz J Microbiol 48, 25–31

    Google Scholar 

  38. Dodd MS, Papineau D, Grenne T, Slack JF, Rittner M, Pirajno F, O’Neil J, Little CT (2017) Evidence for early life in Earth’s oldest hydrothermal vent precipitates. Nature 543(7643):60–64

    Article  CAS  Google Scholar 

  39. Donkadokula NY, Kola AK, Naz I, Saroj D (2020) A review on advanced physico-chemical and biological textile dye wastewater treatment techniques. Rev Environ Sci Biotechnol 19(3):543–560

    Article  CAS  Google Scholar 

  40. Dos Santos AB, Cervantes FJ, Van Lier JB (2007) Review paper on current technologies for decolourisation of textile wastewaters: perspectives for anaerobic biotechnology. Bioresource Technol 98(12):2369–2385

    Article  Google Scholar 

  41. Dutta S, Bhattacharjee J (2022) A comparative study between physicochemical and biological methods for effective removal of textile dye from wastewater. In: Development in wastewater treatment research and processes. Elsevier, pp 1–21

    Google Scholar 

  42. Ebency CIL, Rajan S, Murugesan A, Rajesh R, Elayarajah B (2013) Biodegradation of textile azo dyes and its bioremediation potential using seed germination efficiency. Int J Curr Microbiol App Sci 2(10):496–505

    Google Scholar 

  43. El-Sheekh MM, Gharieb M, Abou-El-Souod G (2009) Biodegradation of dyes by some green algae and cyanobacteria. Int Biodeter Biodegr 63(6):699–704

    Article  CAS  Google Scholar 

  44. Elliott A, Hanby W, Malcolm B (1954) The near infra-red absorption spectra of natural and synthetic fibres. Brit J Appl Phys 5(11):377

    Article  CAS  Google Scholar 

  45. Faryal R, Tahir F, Hameed A (2007) Effect of wastewater irrigation on soil along with its micro and macro flora. Pak J Bot 39(1):193

    Google Scholar 

  46. Foster FJ, Woodbury L (1936) The use of malachite green as a fish fungicide and antiseptic. The Progressive Fish-Culturist 3(18):7–9

    Article  Google Scholar 

  47. Fung DY, Miller RD (1973) Effect of dyes on bacterial growth. Appl Microbiol 25(5):793–799

    Article  CAS  Google Scholar 

  48. Gähr F, Hermanutz F, Oppermann W (1994) Ozonation-an important technique to comply with new German laws for textile wastewater treatment. Water Sci Technol 30(3):255

    Article  Google Scholar 

  49. Ghaly A, Ananthashankar R, Alhattab M, Ramakrishnan V (2014) Production, characterization and treatment of textile effluents: a critical review. J Chem Eng Process Technol 5(1):1–19

    Google Scholar 

  50. Gita S, Hussan A, Choudhury T (2017) Impact of textile dyes waste on aquatic environments and its treatment. Environ Ecol 35(3C):2349–2353

    Google Scholar 

  51. Gomathi E, Rathika G, Santhini E (2017) Physico-chemical parameters of textile dyeing effluent and its impacts with casestudy. IJRCE 7(1):17–24

    Google Scholar 

  52. Gürses, A., Açıkyıldız, M., Güneş, K., & Gürses, M. S. (2016). Colorants in health and environmental aspects. In: Dyes and pigments. Springer, pp 69–83

    Google Scholar 

  53. Han S, Yang Y (2005) Antimicrobial activity of wool fabric treated with curcumin. Dyes Pigments 64(2):157–161

    Article  CAS  Google Scholar 

  54. Hannan M, Rahman M, Haque M (2011) An investigation on the effects of bleaching powder with dyeing industries’ effluents. J Civil Eng Des 39(1):77–89

    Google Scholar 

  55. Haq I, Raj A (2018) Biodegradation of Azure-B dye by Serratia liquefaciens and its validation by phytotoxicity, genotoxicity and cytotoxicity studies. Chemosphere 196:58–68

    Article  CAS  Google Scholar 

  56. Hashem A, Marlinda AR, Hossain M, Al Mamun M, Shalauddin M, Simarani K, Johan MR (2022) A unique oligonucleotide probe hybrid on graphene decorated gold nanoparticles modified screen‑printed carbon electrode for pork meat adulteration. Electrocatalysis 1–16

    Google Scholar 

  57. Hashem A, Hossain MAM, Marlinda AR, Mamun MA, Sagadevan S, Shahnavaz Z, Simarani K, Johan MR (2022) Nucleic acid-based electrochemical biosensors for rapid clinical diagnosis: advances, challenges, and opportunities. Crit Rev Cl Lab Sci 59(3):156–177. https://doi.org/10.1080/10408363.2021.1997898

    Article  CAS  Google Scholar 

  58. Hashem A, Hossain MM, Rahman MA, Al Mamun M, Simarani K, Johan MR (2021) Nanomaterials based electrochemical nucleic acid biosensors for environmental monitoring: a review. Appl Surf Sci Adv 4:100064

    Article  Google Scholar 

  59. Hashem A, Khalil I, Al Mamun M, Shalauddin M, Hossain MM, Ab Rahman M, Simarani K, Johan MR (2022) Applications of nanocellulose as biosensing platforms for the detection of functional biomacromolecules: a Review. Malay NANO Int J 2(1):15–45

    Article  Google Scholar 

  60. Hashem A, Simarani K, Marlinda AR, Hossain M, Al Mamun M, Johan MR (2022) Application of microbial fuel cells as biosensors. In: Microbial fuel cells for environmental remediation. Springer, pp 349–387

    Google Scholar 

  61. Hassan MM, Carr CM (2018) A critical review on recent advancements of the removal of reactive dyes from dyehouse effluent by ion-exchange adsorbents. Chemosphere 209:201–219

    Article  CAS  Google Scholar 

  62. Hayyat MU, Mahmood R, Hassan S, Rizwan S (2013) Effects of textile effluent on growth performance of Sorghum vulgare Pers CV. SSG-5000. Biologia 59:15–22

    Google Scholar 

  63. Holkar CR, Jadhav AJ, Pinjari DV, Mahamuni NM, Pandit AB (2016) A critical review on textile wastewater treatments: possible approaches. J Environ Manage 182:351–366

    Article  CAS  Google Scholar 

  64. Hossain MAM, Uddin SMK, Sultana S, Hashem A, Rizou M, Aldawoud TMS, Galanakis CM, Johan MR (2021) DNA-based methods for species identification in food forensic science. In: Galanakis CM (ed) Food toxicology and forensics. Academic Press, pp 181–211. https://doi.org/10.1016/b978-0-12-822360-4.00007-8

  65. Hunger K (2007) Industrial dyes: chemistry, properties, applications. Wiley

    Google Scholar 

  66. Hussain B, Yaseen H, Khalid Al G, Al-Misned F, Qasim M, Al-Mulhm N, Mahboob S (2021) A study on risk assessment of effect of hematoxylin dye on cytotoxicity and nephrotoxicity in freshwater fish: food and water security prospective research. Saudi J Biol Sci 28(4):2267–2271. https://doi.org/10.1016/j.sjbs.2021.01.019

    Article  CAS  Google Scholar 

  67. Hussein FH (2013) Chemical properties of treated textile dyeing wastewater. Asian J Chem 25(16):9393–9400

    Article  CAS  Google Scholar 

  68. Imran M, Shaharoona B, Crowley DE, Khalid A, Hussain S, Arshad M (2015) The stability of textile azo dyes in soil and their impact on microbial phospholipid fatty acid profiles. Ecotox Environ Safe 120:163–168

    Article  CAS  Google Scholar 

  69. Imtiazuddin S, Mumtaz M, Mallick KA (2012) Pollutants of wastewater characteristics in textile industries. J Basic App Sci 8:554–556

    Article  CAS  Google Scholar 

  70. Islam A, Guha AK (2013) Removal of pH, TDS and color from textile effluent by using coagulants and aquatic/non aquatic plants as adsorbents. Resources and Environment 3(5):101–114

    Google Scholar 

  71. Islam M, Mostafa M (2018) Textile dyeing effluents and environment concerns-a review. Journal of Environmental Science and Natural Resources 11(1–2):131–144

    Google Scholar 

  72. Islam MT, Islam T, Islam T, Repon MR (2022) Synthetic dyes for textile colouration: process, factors and environmental impact. Textile and leather review 5:327–373

    Article  CAS  Google Scholar 

  73. Ito T, Adachi Y, Yamanashi Y, Shimada Y (2016) Long–term natural remediation process in textile dye–polluted river sediment driven by bacterial community changes. Water Res 100:458–465

    Article  CAS  Google Scholar 

  74. Jäger I, Hafner C, Schneider K (2004) Mutagenicity of different textile dye products in Salmonella typhimurium and mouse lymphoma cells. Mutation Research/Genetic Toxicology and Environmental Mutagenesis 561(1–2):35–44

    Article  Google Scholar 

  75. Jamee R, Siddique R (2019) Biodegradation of synthetic dyes of textile effluent by microorganisms: an environmentally and economically sustainable approach. European Journal of Microbiology and Immunology 9(4):114–118

    Article  CAS  Google Scholar 

  76. Jamialahmadi K, Soltani F, Nabavi fard M, Behravan J, Mosaffa F (2014) Assessment of protective effects of glucosamine and N-acetyl glucosamine against DNA damage induced by hydrogen peroxide in human lymphocytes. Drug Chem Toxicol 37(4):427–432

    Google Scholar 

  77. Javed M, Usmani N (2016). Accumulation of heavy metals and human health risk assessment via the consumption of freshwater fish Mastacembelus armatus inhabiting, thermal power plant effluent loaded canal, vol 5(1). Springerplus, p 776. https://doi.org/10.1186/s40064-016-2471-3

  78. Jin X, Wu C, Tian X, Wang P, Zhou Y, Zuo J (2021) A magnetic-void-porous MnFe2O4/carbon microspheres nano-catalyst for catalytic ozonation: preparation, performance and mechanism. Environmental Science and Ecotechnology 7:100110

    Article  Google Scholar 

  79. Kabra AN, Khandare RV, Kurade MB, Govindwar SP (2011) Phytoremediation of a sulphonated azo dye Green HE4B by Glandularia pulchella (Sweet) Tronc.(Moss Verbena). Environ Sci Pollut R 18(8):1360–1373

    Google Scholar 

  80. Kagalkar AN, Jagtap UB, Jadhav JP, Bapat VA, Govindwar SP (2009) Biotechnological strategies for phytoremediation of the sulfonated azo dye Direct Red 5B using Blumea malcolmii Hook. Bioresource Technol 100(18):4104–4110

    Article  CAS  Google Scholar 

  81. Kahraman S, Yalcin P (2005) Antibacterial effect of untreated and treated (Decolourized) dyes by agricultural wastes. Am J Biochem Biotechnol 1(1):50–53

    Article  CAS  Google Scholar 

  82. Kamal AKI, Ahmed F, Hassan M, Uddin M, Hossain SM (2016) Characterization of textile effluents from Dhaka export processing zone (DEPZ) Area in Dhaka Bangladesh. Pollution 2(2):153–161

    Google Scholar 

  83. Kamyab A, McGill E, Firman J (2009) The use of hexamethyl-p-rosaniline chloride as an ingredient in poultry feed. Worlds Poult Sci J 65(3):475–480

    Article  Google Scholar 

  84. Kant R (2011) Textile dyeing industry an environmental hazard

    Google Scholar 

  85. Kao C, Chou M, Fang W, Liu B, Huang B (2001) Regulating colored textile wastewater by 3/31 wavelength ADMI methods in Taiwan. Chemosphere 44(5):1055–1063

    Article  CAS  Google Scholar 

  86. Karim ME, Sanjee SA, Mahmud S, Shaha M, Moniruzzaman M, Das KC (2020) Microplastics pollution in Bangladesh: current scenario and future research perspective. Chem Ecol 36(1):83–99. https://doi.org/10.1080/02757540.2019.1688309

    Article  Google Scholar 

  87. Karthikeyeni S, Siva Vijayakumar T, Vasanth S, Ganesh A, Vignesh V, Akalya J, Thirumurugan R, Subramanian P (2015) Decolourisation of Direct Orange S dye by ultra sonication using iron oxide nanoparticles. J Exp Nanosci 10(3):199–208. https://doi.org/10.1080/17458080.2013.822107

    Article  CAS  Google Scholar 

  88. Kaur H, Kainth GS (2020) Mutagenicity assessment of textile dyes using AMES test. Int. J. Adv. Study Res. Work 3(1):1–6

    Google Scholar 

  89. Kaur H, Sharma G (2015) Removal of dyes from textile industry effluent: a review. Int J Humanit Soc Sci 2(4):59–63

    Google Scholar 

  90. Kaushik P, Garg V, Singh B (2005) Effect of textile effluents on growth performance of wheat cultivars. Bioresource Technol 96(10):1189–1193

    Article  CAS  Google Scholar 

  91. Kehinde F, Aziz HA (2014) Textile waste water and the advanced oxidative treatment process, an overview. International Journal of Innovative Research in Science, Engineering and Technology 3(8):15310–15317

    Article  Google Scholar 

  92. Khalil I, Hashem A, Nath AR, Muhd Julkapli N, Yehye WA, Basirun WJ (2021) DNA/Nano based advanced genetic detection tools for authentication of species: strategies, prospects and limitations. Mol Cell Probes 59:101758. https://doi.org/10.1016/j.mcp.2021.101758

    Article  CAS  Google Scholar 

  93. Khan S, Anas M, Malik A (2019) Mutagenicity and genotoxicity evaluation of textile industry wastewater using bacterial and plant bioassays. Toxicol Rep 6:193–201

    Article  CAS  Google Scholar 

  94. Khan S, Malik A (2018) Toxicity evaluation of textile effluents and role of native soil bacterium in biodegradation of a textile dye. Environ Sci Pollut R 25(5):4446–4458. https://doi.org/10.1007/s11356-017-0783-7

    Article  CAS  Google Scholar 

  95. Khandare RV, Govindwar SP (2015) Phytoremediation of textile dyes and effluents: current scenario and future prospects. Biotechnol Adv 33(8):1697–1714

    Article  CAS  Google Scholar 

  96. Khandare RV, Kabra AN, Kurade MB, Govindwar SP (2011) Phytoremediation potential of Portulaca grandiflora Hook.(Moss-Rose) in degrading a sulfonated diazo reactive dye Navy Blue HE2R (Reactive Blue 172). Bioresource Technol 102(12):6774–6777

    Google Scholar 

  97. Khandare RV, Rane NR, Waghmode TR, Govindwar SP (2012) Bacterial assisted phytoremediation for enhanced degradation of highly sulfonated diazo reactive dye. Environ Sci Pollut R 19(5):1709–1718

    Article  CAS  Google Scholar 

  98. Khattab TA, Rehan M, Hamouda T (2018) Smart textile framework: photochromic and fluorescent cellulosic fabric printed by strontium aluminate pigment. Carbohyd Polym 195:143–152

    Article  CAS  Google Scholar 

  99. Kishor R, Purchase D, Saratale GD, Saratale RG, Ferreira LFR, Bilal M, Chandra R, Bharagava RN (2021) Ecotoxicological and health concerns of persistent coloring pollutants of textile industry wastewater and treatment approaches for environmental safety. J Environ Chem Eng 9(2):105012

    Article  CAS  Google Scholar 

  100. Koprivanac N, Bosanac G, Grabaric Z, Papic S (1993) Treatment of wastewaters from dye industry. Environ Technol 14(4):385–390

    Article  CAS  Google Scholar 

  101. Lacasse K, Baumann W (2012) Textile chemicals: environmental data and facts. Springer Science & Business Media

    Google Scholar 

  102. Laing I (1991) The impact of effluent regulations on the dyeing industry. Rev Prog Color Relat Top 21(1):56–71

    CAS  Google Scholar 

  103. Landecker H (2019) Antimicrobials before antibiotics: war, peace, and disinfectants. Palgrave Communications 5(1):1–11

    Article  Google Scholar 

  104. Lellis B, Fávaro-Polonio CZ, Pamphile JA, Polonio JC (2019) Effects of textile dyes on health and the environment and bioremediation potential of living organisms. Biotechnology Research and Innovation 3(2):275–290

    Article  Google Scholar 

  105. Lim S-L, Chu W-L, Phang S-M (2010) Use of Chlorella vulgaris for bioremediation of textile wastewater. Bioresource Technol 101(19):7314–7322

    Article  CAS  Google Scholar 

  106. Liu R, Tian Q, Yang B, Chen J (2010) Hybrid anaerobic baffled reactor for treatment of desizing wastewater. Int J Environ Sci Technol 7(1):111–118

    Article  CAS  Google Scholar 

  107. Mahawar P, Akhtar A (2016) Impact of dye effluent on growth and chlorophyll content of alfalfa (Medicago sativa L.). Annals of Plant Sciences 5(10):1432–1435

    Google Scholar 

  108. Malaviya P, Hali R, Sharma N (2012) Impact of dyeing industry effluent on germination and growth of pea (Pisum sativum). J Environ Biol 33(6):1075

    Google Scholar 

  109. Mani S, Bharagava RN (2016) Exposure to crystal violet, its toxic, genotoxic and carcinogenic effects on environment and its degradation and detoxification for environmental safety. Rev Environ Contam T 237:71–104

    CAS  Google Scholar 

  110. Manna A, Amutha C (2018) Early maturation and liver necrosis in the fingerling stage of Oreochromis mossambicus due to BPA can cause an ecological imbalance. RSC Adv 8(23):12894–12899. https://doi.org/10.1039/c7ra11432j

    Article  CAS  Google Scholar 

  111. Maron DM, Ames BN (1983) Revised methods for the Salmonella mutagenicity test. Mutation Research/Environmental Mutagenesis and Related Subjects 113(3–4):173–215

    Article  CAS  Google Scholar 

  112. McCann J, Choi E, Yamasaki E, Ames BN (1975) Detection of carcinogens as mutagens in the Salmonella/microsome test: assay of 300 chemicals. Proc Natl Acad Sci 72(12):5135–5139

    Article  CAS  Google Scholar 

  113. Michaels GB, Lewis DL (1985) Sorption and toxicity of azo and triphenylmethane dyes to aquatic microbial populations. Environ Toxicol Chem 4(1):45–50

    Article  CAS  Google Scholar 

  114. Mohamed FA, Elkhabiry S, Ismail IA, Attia AO (2022) Synthesis, application and antimicrobial activity of new acid dyes based on 3-amino-2-thioxo-4-thiazolidinone nucleus on wool and silk fabrics. Curr Org Synth 19(1):166–176

    Article  CAS  Google Scholar 

  115. Mohammad Al Mamun YAW, Hossain MAM, Hashem A, Johan MR (2021) Electrochemical biosensors with Aptamer recognition layer for the diagnosis of pathogenic bacteria: barriers to commercialization and remediation. Trac-Trend Anal Chem145:116458

    Google Scholar 

  116. Mohan D, Shukla SP (2022) Hazardous consequences of textile mill effluents on soil and their remediation approaches. Cleaner Engineering and Technology 7:100434

    Article  Google Scholar 

  117. Nestmann ER, Douglas GR, Matula TI, Grant CE, Kowbel DJ (1979) Mutagenic activity of rhodamine dyes and their impurities as detected by mutation induction in Salmonella and DNA damage in Chinese hamster ovary cells. Cancer Res 39(11):4412–4417

    CAS  Google Scholar 

  118. Nosheen S, Nawaz H, Rehman K-U (2000) Physicochemical characterization of effluents of local textile industries of Faisalabad-Pakistan. Int J Agric Biol 2(3):232–233

    Google Scholar 

  119. Ogugbue CJ, Sawidis T (2011) Bioremediation and detoxification of synthetic wastewater containing triarylmethane dyes by Aeromonas hydrophila isolated from industrial effluent. Biotechnol Res Int 2011:967925

    Article  Google Scholar 

  120. Owolabi OD, Abdulkareem SI, Ajibare AO (2021) Haemato-biochemical and ionic regulatory responses of the hybrid catfish, Heteroclarias, to sublethal concentrations of palm oil mill effluents. Bulletin of the National Research Centre 45(1):220. https://doi.org/10.1186/s42269-021-00679-8

    Article  Google Scholar 

  121. Pan H, Feng J, He G-X, Cerniglia CE, Chen H (2012) Evaluation of impact of exposure of Sudan azo dyes and their metabolites on human intestinal bacteria. Anaerobe 18(4):445–453

    Article  CAS  Google Scholar 

  122. Parvin F, Islam S, Akm SI, Urmy Z, Ahmed S (2020) A study on the solutions of environment pollutions and worker’s health problems caused by textile manufacturing operations. Biomedical Journal of Scientific & Technical Research 28(4):21831–21844

    Google Scholar 

  123. Patel R, Tajddin K, Patel A, Patel B (2015) Physico-chemical analysis of textile effluent. IJRSI 5(2):33–37

    Google Scholar 

  124. Patil AV, Jadhav JP (2013) Evaluation of phytoremediation potential of Tagetes patula L. for the degradation of textile dye Reactive Blue 160 and assessment of the toxicity of degraded metabolites by cytogenotoxicity. Chemosphere 92(2):225–232

    Google Scholar 

  125. Patil R, Zahid M, Govindwar S, Khandare R, Vyavahare G, Gurav R, Desai N, Pandit S, Jadhav J (2022) Constructed wetland: a promising technology for the treatment of hazardous textile dyes and effluent. In: Development in wastewater treatment research and processes. Elsevier, pp 173–198

    Google Scholar 

  126. Peláez-Cid AA, Velázquez-Ugalde I, Herrera-González AM, García-Serrano J (2013) Textile dyes removal from aqueous solution using Opuntia ficus-indica fruit waste as adsorbent and its characterization. J Environ Manage 130:90–97. https://doi.org/10.1016/j.jenvman.2013.08.059

    Article  CAS  Google Scholar 

  127. Penninks A, Baert K, Levorato S, Binaglia M (2017) Dyes in aquaculture and reference points for action. EFSA J 15(7):e04920

    Google Scholar 

  128. Perkins WS (1991) A review of textile dyeing processes. Text Chem Color 23(8):23–27

    CAS  Google Scholar 

  129. Peuke AD, Rennenberg H (2005) Phytoremediation: molecular biology, requirements for application, environmental protection, public attention and feasibility. EMBO Rep 6(6):497–501

    Article  CAS  Google Scholar 

  130. Piątkowska M, Jedziniak P, Olejnik M, Żmudzki J, Posyniak A (2018) Absence of evidence or evidence of absence? A transfer and depletion study of Sudan I in eggs. Food Chem 239:598–602

    Article  Google Scholar 

  131. Pokharia A, Ahluwalia SS (2015) Toxicological effect of textile dyes and their metabolites: a review. Current Trends in Biotechnology and Chemical Research| January-June 5(1):11–17

    Google Scholar 

  132. Pokhriya P, Rajput R, Nautiyal P, Panwar P, Pandey D, Daverey A, Arunachalam A, Shridhar V, Arunachalam K (2020) Impact assessment of textile effluent on health and microbiota of agricultural soil in Bhagwanpur (Uttarakhand) India. SN Applied Sciences 2(9):1–10

    Article  Google Scholar 

  133. Prival MJ, Bell SJ, Mitchell VD, Peiperl MD, Vaughan VL (1984) Mutagenicity of benzidine and benzidine-congener dyes and selected monoazo dyes in a modified Salmonella assay. Mutation Research/Genetic Toxicology 136(1):33–47

    Article  CAS  Google Scholar 

  134. Rajasimman M, Babu SV, Rajamohan N (2017) Biodegradation of textile dyeing industry wastewater using modified anaerobic sequential batch reactor–start-up, parameter optimization and performance analysis. J Taiwan Inst Chem E 72:171–181

    Article  CAS  Google Scholar 

  135. Rane NR, Patil SM, Chandanshive VV, Kadam SK, Khandare RV, Jadhav JP, Govindwar SP (2016) Ipomoea hederifolia rooted soil bed and Ipomoea aquatica rhizofiltration coupled phytoreactors for efficient treatment of textile wastewater. Water Res 96:1–11

    Article  CAS  Google Scholar 

  136. Rani B, Kumar V, Singh J, Bisht S, Teotia P, Sharma S, Kela R (2014) Bioremediation of dyes by fungi isolated from contaminated dye effluent sites for bio-usability. Braz J Microbiol 45:1055–1063

    Article  Google Scholar 

  137. Rápó E, Posta K, Csavdári A, Vincze BÉ, Mara G, Kovács G, Haddidi I, Tonk S (2020) Performance comparison of Eichhornia crassipes and Salvinia natans on azo-dye (Eriochrome Black T) phytoremediation. Crystals 10(7):565

    Article  Google Scholar 

  138. Rawat D, Mishra V, Sharma RS (2016) Detoxification of azo dyes in the context of environmental processes. Chemosphere 155:591–605

    Article  CAS  Google Scholar 

  139. Rehman K, Shahzad T, Sahar A, Hussain S, Mahmood F, Siddique MH, Siddique MA, Rashid MI (2018) Effect of reactive Black 5 azo dye on soil processes related to C and N cycling. PeerJ 6:e4802

    Article  Google Scholar 

  140. Rodrigues ILA, Motta MCS, Ferreira MA (2016) Representações sociais da tuberculose por enfermeiros. Revista Brasileira de Enfermagem 69:532–537

    Google Scholar 

  141. Roy R, Fakhruddin A, Khatun R, Islam M, Ahsan M, Neger A (2010) Characterization of textile industrial effluents and its effects on aquatic macrophytes and algae. Bangladesh Journal of Scientific and Industrial Research 45(1):79–84

    Article  CAS  Google Scholar 

  142. Saravanamoorthy M, Kumari BR (2007) Effect of textile waste water on morphophysiology and yield on two varieties of peanut (Arachis hypogaea L.). Journal of Agricultural Technology 3(2):335–343

    Google Scholar 

  143. Sawyer CN, McCarty PL (1978) Chemistry for environmental engineering. McGraw-Hill

    Google Scholar 

  144. Selvaraj D, Leena R, Kamal D (2015) Toxicological and histopathological impacts of textile dyeing industry effluent on a selected teleost fish Poecilia reticulata. Asian Journal of Pharmacology and Toxicology 3(10):26–30

    Google Scholar 

  145. Şen S, Demirer G (2003) Anaerobic treatment of real textile wastewater with a fluidized bed reactor. Water Res 37(8):1868–1878

    Article  Google Scholar 

  146. Sen SK, Raut S, Bandyopadhyay P, Raut S (2016) Fungal decolouration and degradation of azo dyes: a review. Fungal Biol Rev 30(3):112–133

    Article  Google Scholar 

  147. Sender R, Fuchs S, Milo R (2016) Revised estimates for the number of human and bacteria cells in the body. PLoS Biol 14(8):e1002533

    Article  Google Scholar 

  148. Sharma A, Kumar V, Shahzad B, Ramakrishnan M, Singh Sidhu GP, Bali AS, Handa N, Kapoor D, Yadav P, Khanna K (2020) Photosynthetic response of plants under different abiotic stresses: a review. J Plant Growth Regul 39(2):509–531

    Google Scholar 

  149. Sharma K, Sharma P, Dhiman SK, Chadha P, Saini HS (2022) Biochemical, genotoxic, histological and ultrastructural effects on liver and gills of fresh water fish Channa punctatus exposed to textile industry intermediate 2 ABS. Chemosphere 287:132103

    Article  CAS  Google Scholar 

  150. Sharma MK, Sobti R (2000) Rec effect of certain textile dyes in Bacillus subtilis. Mutation Research/Genetic Toxicology and Environmental Mutagenesis 465(1–2):27–38

    Article  CAS  Google Scholar 

  151. Sharma S, Sharma S, Pathak S, Sharma KP (2003) Toxicity of the azo dye methyl red to the organisms in microcosms, with special reference to the guppy (Poecilia reticulata Peters). Bull Environ Contam Toxicol 70(4):753–760. https://doi.org/10.1007/s00128-003-0047-8

    Article  CAS  Google Scholar 

  152. Shelley T (1994) Dye pollution clean-up by synthetic mineral. Int Dyer 79:26–31

    Google Scholar 

  153. Singh L (2017) Biodegradation of synthetic dyes: a mycoremediation approach for degradation/decolourization of textile dyes and effluents. J Appl Biotechnol Bioeng 3(5):430–435

    Google Scholar 

  154. Singh Z, Chadha P (2016) Textile industry and occupational cancer. J Occup Med Toxicol 11(1):1–6

    Article  Google Scholar 

  155. Sinsabaugh RL, Antibus RK, Linkins AE (1991) An enzymic approach to the analysis of microbial activity during plant litter decomposition. Agr Ecosyst Environ 34(1–4):43–54

    Article  CAS  Google Scholar 

  156. Slama HB, Chenari Bouket A, Pourhassan Z, Alenezi FN, Silini A, Cherif-Silini H, Oszako T, Luptakova L, Golińska P, Belbahri L (2021) Diversity of synthetic dyes from textile industries, discharge impacts and treatment methods. Appl Sci 11(14):6255

    Article  CAS  Google Scholar 

  157. Soo JAL, Makhtar MMZ, Shoparwe NF, Otitoju TA, Mohamad M, Tan LS, Li S (2021) Characterization and kinetic studies of poly(vinylidene fluoride-co-hexafluoropropylene) polymer inclusion membrane for the malachite green extraction. Membranes (Basel) 11(9):676. https://doi.org/10.3390/membranes11090676

    Article  CAS  Google Scholar 

  158. Souza AGV, Maria TC, Saran LM, Alves LMC (2022) Enzymatic bioremediation of dyes from textile industry effluents. Intechopen

    Google Scholar 

  159. Sultana Z, Ali ME, Uddin MS, Haque MM (2013) Implementation of effluent treatment plants for waste water treatment. J Environ Prot 4(3):28740

    Article  Google Scholar 

  160. Tabish TA, Memon FA, Gomez DE, Horsell DW, Zhang S (2018) A facile synthesis of porous graphene for efficient water and wastewater treatment. Sci Rep-Uk 8(1):1–14

    CAS  Google Scholar 

  161. Thangaraj S, Bankole PO, Sadasivam SK (2021) Microbial degradation of azo dyes by textile effluent adapted, Enterobacter hormaechei under microaerophilic condition. Microbiol Res 250:126805

    Article  CAS  Google Scholar 

  162. Tolkushin A, Luchinin E, Kholovnya-Voloskova M, Zavyalov A (2020) History of aminoquinoline preparations: from cinchona bark to chloroquine and hydroxychloroquinon. Problemy Sotsial’noi Gigieny, Zdravookhraneniia i Istorii Meditsiny 28(Special Issue): 1118–1122

    Google Scholar 

  163. Tounsadi H, Metarfi Y, Taleb M, El Rhazi K, Rais Z (2020) Impact of chemical substances used in textile industry on the employee’s health: epidemiological study. Ecotox Environ Safe 197:110594

    Article  CAS  Google Scholar 

  164. Uwidia I (2013) Characterisation of textile wastewater discharges in Nigeria and its pollution implications. Global Journals of Research in Engineering 13(4):1–4

    Google Scholar 

  165. Vargas A, Paulino A, Nozaki J (2009) Effects of daily nickel intake on the bio-accumulation, body weight and length in tilapia (Oreochromis niloticus). Toxicol Environ Chem 91(4):751–759

    Article  CAS  Google Scholar 

  166. Vikrant K, Giri BS, Raza N, Roy K, Kim K-H, Rai BN, Singh RS (2018) Recent advancements in bioremediation of dye: current status and challenges. Bioresource Technol 253:355–367

    Article  CAS  Google Scholar 

  167. Watharkar AD, Jadhav JP (2014) Detoxification and decolorization of a simulated textile dye mixture by phytoremediation using Petunia grandiflora and Gailardia grandiflora: a plant–plant consortial strategy. Ecotox Environ Safe 103:1–8

    Article  CAS  Google Scholar 

  168. Watharkar AD, Kadam SK, Khandare RV, Kolekar PD, Jeon B-H, Jadhav JP, Govindwar SP (2018) Asparagus densiflorus in a vertical subsurface flow phytoreactor for treatment of real textile effluent: a lab to land approach for in situ soil remediation. Ecotox Environ Safe 161:70–77

    Article  CAS  Google Scholar 

  169. Yang C, Li L, Shi J, Long C, Li A (2015) Advanced treatment of textile dyeing secondary effluent using magnetic anion exchange resin and its effect on organic fouling in subsequent RO membrane. J Hazard Mater 284:50–57

    Article  CAS  Google Scholar 

  170. Yaseen DA, Scholz M (2016) Shallow pond systems planted with Lemna minor treating azo dyes. Ecol Eng 94:295–305

    Article  Google Scholar 

  171. Yun M-K, Wu Y, Li Z, Zhao Y, Waddell MB, Ferreira AM, Lee RE, Bashford D, White SW (2012) Catalysis and sulfa drug resistance in dihydropteroate synthase. Science 335(6072):1110–1114

    Article  CAS  Google Scholar 

  172. Zabłocka-Godlewska E, Przystaś W, Grabińska-Sota E (2018) Possibilities of obtaining from highly polluted environments: new bacterial strains with a significant decolorization potential of different synthetic dyes. Water Air Soil Pollut 229(6):1–13

    Article  Google Scholar 

  173. Zhao B, Xiao W, Shang Y, Zhu H, Han R (2017) Adsorption of light green anionic dye using cationic surfactant-modified peanut husk in batch mode. Arab J Chem 10:S3595–S3602

    Article  CAS  Google Scholar 

  174. Zheng X, Fu D, Cheng J, Tang R, Chu M, Chu P, Wang T, Yin S (2021) Effects of hypoxic stress and recovery on oxidative stress, apoptosis, and intestinal microorganisms in Pelteobagrus vachelli. Aquaculture 543:736945

    Article  Google Scholar 

  175. Zollinger H (1987) Azo dyes and pigments. Colour chemistry-synthesis, properties and applications of organic dyes and pigments, pp 92–100

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abu Hashem .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Akter, T., Protity, A.T., Shaha, M., Al Mamun, M., Hashem, A. (2023). The Impact of Textile Dyes on the Environment. In: Ahmad, A., Jawaid, M., Mohamad Ibrahim, M.N., Yaqoob, A.A., Alshammari, M.B. (eds) Nanohybrid Materials for Treatment of Textiles Dyes. Smart Nanomaterials Technology. Springer, Singapore. https://doi.org/10.1007/978-981-99-3901-5_17

Download citation

Publish with us

Policies and ethics